

Response Action Plan and Construction Contingency Plan

Rice's Point Docks C & D Helberg Drive, Duluth, Minnesota

Prepared for LHB Corporation and the Duluth Seaway Port Authority

MPCA VIC No. VP30770 and PBP No. PB4479

July 2014

4700 West 77th Street
Minneapolis, MN 55435-4803
Phone: 952.832.2600
Fax: 952.832.2601

Response Action Plan and Construction Contingency Plan

Rice's Point Docks C & D Helberg Drive, Duluth, Minnesota

July 2014

Contents

1.0	Introduction	1
1.1	Response Action Plan and Construction Contingency Plan Scope and Objectives	1
1.2	Requested MPCA Assurances	2
1.3	Contact Information	3
2.0	Property Background	4
2.1	Historic Uses	4
2.2	Future Uses	4
2.3	Previous Property Assessments	5
2.4	Summary of Previous Investigations / Sampling Results	6
2.4	4.1 Field Observations	7
2.4	4.2 Soil – Herbicides and Pesticides	7
2.4	4.3 Soil - RCRA Metals	7
2.4	4.4 Soil - Volatile Organic Compounds (VOCs) and DRO	8
2.4	4.5 Soil - Semi-Volatile Organic Compounds (SVOCs)	8
2.4	4.6 Soil – Polyaromatic Hydrocarbons (PAHs)	9
2.4	4.7 Soil - Polychlorinated Biphenyls (PCBs)	9
2.5	Slip D Sediments – PAHs	9
3.0	Response Action Plan	10
3.1	General Approach and Operation	10
3.2	Contaminants of Concern, Cleanup Goals and Covering of Remaining Contaminated Soil	11
3.3	Additional Sampling – Sediment in Slip D	12
3.4	Dust Control Procedures during Earthwork	12
3.5	Erosion Control and Stormwater Management	13
3.6	Contaminated Soil Excavation, Removal, Transport, and Disposal	13

3.6	6.1	Limited Remedial Soil Excavations	13
3.6	6.2	Temporary Soil Stockpiles, Transport, and Disposal	14
3.6	6.3	Dredged Sediments, Slip D	14
3.7		On Site Soil Management Activities	15
3.7	7.1	Grading	15
3.7	7.2	Construction Excavation	15
3.7	7.3	Sheet Pile Installation	16
3.8		Construction Water Management	16
3.9		Offsite Disposal of Excavated Materials	17
3.10		Institutional Controls	17
3.11		Documentation of Response Actions	17
3.12		Permitting	17
3.13		Implementation Schedule	17
4.0	Co	nstruction Contingency Plan	18
4.1		Site Safety Plan	18
4.2		Construction Contingency Plan	18
4.2	2.1	Dissimilar Contaminated Soil	18
4.2	2.2	Underground Storage Tanks	19
4.2	2.3	Drums, Containers or Other Waste	19
4.2	2.4	Suspect Asbestos-Containing Materials (ACM)	19
4.2	2.5	Excavation Water Management	20
4.2	2.6	Other Buried Debris	20
5.0	Re	ferences	21

List of Figures

Figure 1	Site Location
Figure 2	Property Layout
Figure 3	Conceptual Development Plans
Figure 4	Historical Features with Conditions and Findings of Phase I ESA
Figure 5	Soil Sample, Sediment Sample, and Test Pit Excavation
Figure 6	DRO Comparison Results
Figure 7	SRV Comparison Results
Figure 8	Proposed Limited Remedial Soil Excavation Locations
Figure 9	Grading / Site Improvements Plan

List of Appendices

Appendix A Sediment Sampling Reports for Dock D (EPC 2012 and 2013)

1.0 Introduction

This Response Action Plan (RAP) and Construction Contingency Plan (CCP) present the methods, actions and controls proposed to be implemented to protect human health and the environment for the Rice's Point Docks C & D property located between 800 and 900 Helberg Drive in the NW ¼ of Section 3, Township 49 North, Range 14 West, in Duluth, St. Louis County, Minnesota, referred to hereafter as the Property. The Property location is shown on Figure 1. The approximate Property boundaries are shown on Figure 2 and include only the land portion of the Property and the northern half of Slip D.

Barr Engineering Company (Barr) was retained by LHB Corporation (LHB) on behalf of the Duluth Seaway Port Authority (DSPA) to prepare this RAP/CCP for the Property that is owned by the DSPA and used as a shipping dock. The Property is planned to be redeveloped for use as an industrial shipping dock. The Property is enrolled in the Minnesota Pollution Control Agency (MPCA) Voluntary Investigation and Cleanup (VIC) Program in November 2013. The VIC number assigned to the Property is VP30770 and the Petroleum Brownfields Program number is PB4479. This RAP was prepared in support of planning for development of the Property.

The northern corner of the Property currently is used as a docking and tie-up area for Great Lakes Towing. The rest of the dock currently is vacant and is zoned as heavy industrial. Buildings include a small shed and office building to support the Great Lakes Towing operation on the Property. The current and past use of the area surrounding the Property is industrial. Historically the Property has been used as a sawmill, grain elevator and laydown yard for multiple industrial activities. Historical buildings, including grain elevators, have been demolished. The history of development and land uses on and in the vicinity of the Property are summarized in previous investigation reports listed in Section 2.3.

1.1 Response Action Plan and Construction Contingency Plan Scope and Objectives

The scope of the RAP/CCP is to implement response action measures for management of contaminated soil, sediments and construction water during development of the Property that are protective of human health and the environment and consistent with the proposed heavy industrial uses of the Property. Groundwater response actions are not anticipated.

The proposed RAP includes planned steps for managing contaminated material necessary to achieve the objectives for the Property. The soil response actions will include excavation, sediment dredging, on-site management, off-site disposal of contaminated materials as necessary, and backfilling and covering of remaining soil.

The primary contaminants of concern (COCs) established for this property is the combined polynuclear aromatic hydrocarbons (PAH) benzo-a-pyrene (BaP) equivalent. The MPCA Tier 2 (Industrial) Soil Reference Values (SRVs) for BaP equivalent is 3.0 milligrams per kilogram (mg/kg). However, during a our project meeting with the MPCA on February 25, 2014, a verbal cleanup goal of 6 mg/kg was approved specifically for this site for (B(a)P) equivalent concentrations in soil/sediment based on the proposed

heavy industrial use and proposed plan for covering the entire site using class 5 gravel that will be separated from underlying contaminated soil by a geotextile fabric layer, as described in the following sections (MPCA, 2014). The proposed RAP includes planned steps for managing contaminated soil/sediment necessary to achieve the cleanup and redevelopment objectives for the Property. The soil/sediment management response actions will include a combination of excavation, covering with soil meeting site cleanup goals, and pavement. Construction water management will consist of removing excess water from soils and sediments excavated from below the water table, as necessary. Water that is removed from the soils and sediments is expected to be managed by onsite re-infiltration.

The CCP presents proposed contingency methods to be used and actions to be taken in the event of discovering additional hazardous substances or petroleum products not currently documented at the Property, but which may reasonably be expected to occur at a former industrial site of this nature and past history. The CCP also outlines the procedures that will be required for the contractor during construction activities to protect human health and the environment.

The methods, proposed response actions and construction contingency measures presented in this plan are based on the currently proposed site plans (as of June, 2014) as shown on Figure 3, and on the sampling data collected through December 20, 2013.

1.2 Requested MPCA Assurances

The DSPA requests technical review and approval of the response actions outlined in this RAP/CCP. No additional MPCA assurances are being sought at this time.

1.3 Contact Information

Site Location: Docks C & D

Rice's Point

Between 800 and 900 Helberg Drive

NW 1/4 of Sec. 3, T49N, R14W, St. Louis County

City of Duluth, Minnesota

Project Contact: Jim Sharrow, Facilities Manager

Duluth Seaway Port Authority 1200 Port Terminal Drive

Duluth, MN 55802 Phone: (218) 727-8525

Email: jsharrow@duluthport.com

Lynette Carney, Project Manager

Barr Engineering Company

(Consultant, Barr Engineering Company

Environmental): 332 West Superior Street, Suite 600

Duluth, MN 55802 Phone: (218) 529-8234

Email: lcarney@barr.com

LHB Corporation Joe Litman, Structural Engineer

(Consultant, LHB Corporation

Lead Design Engineer): 21 West Superior Street, Suite 500

Duluth, MN 55802

Phone: (218) 279-2455

Email: joe.litman@lhbcorp.com

2.0 Property Background

This section summarizes previous investigations of the Property. The results of the recent investigations were evaluated in conjunction with previous investigation results to provide an updated and more comprehensive understanding of the existing environmental conditions at the Property.

2.1 Historic Uses

The following historical information is summarized from previous reports (Barr, 2013; Barr, 2014). The Property is located on Rice's Point, which is an industrial development area of the Duluth Harbor that supports the shipping industry. The Property is approximately 26 acres of industrial port land taking the form of a peninsula. The peninsula is bordered by water-filled boat slips on the north and south sides and by the Duluth harbor and ship channel on the east side. The current Property layout is shown on Figure 2.

Historically, the Property has been used by a sawmill, a grain elevator, and as a laydown yard for multiple industrial activities. The land occupied by the docks on the Property was created in the early 1900s with dredge material from the harbor. The Property has had over one hundred years of industrial development including a lumber mill operation followed by filling to create the current pier where three separate grain elevator complexes were built. The elevators had the following associated features: two train sheds, one truck unloading station, two headhouses, a coal-fired powerhouse for generating electricity, an outdoor coal storage area, railroad sidings with multiple tracks, and a truck access road. Historical features are shown on Figure 4. Historical buildings were serviced by the water supply well and private septic. Former building foundation slabs remain on the Property, particularly at the locations of the two former grain elevators (Figure 4).

Buildings remaining on the Property include a small shed and a mobile office building located in the northeastern corner of the property along Dock C which is currently leased by Great Lakes Fleet. The Property is accessible from Helberg Drive and has two separate driveway entrances. The Property is not currently serviced by municipal water or sewer but does have a water supply well. The water supply well will be evaluated for future use or permanent sealing; the evaluation of the water supply well is not part of this RAP. Occasionally, the Property has been used for additional industrial and/or commercial purposes such as storage of commercial products brought in by ship, a material laydown area or temporary soil storage for other materials and/or equipment as needed by DSPA tenants.

Dock walls on the Slip D and Channel Dock sides of the Property are in poor condition and much of the area behind the wall along Slip D has been washed into the slip through wave and ice action.

2.2 Future Uses

The Property is proposed for commercial development. Future development at the Property associated with this plan will consist of the stabilization, repair, and reconstruction of sections of dock wall, and dredging a portion of Slip D. Development plans also include site grading, addition of a facilities building and security fencing, extension of utility services, addition of lighting and power supply points, addition of

ship tie-downs, and addition of a railroad spur. Figure 3 shows the conceptual layout of the planned development of the Property.

The current conceptual construction plans for the Property will require a limited amount of soil to be removed from the Property; however the majority of the soil will be retained on site. Several areas with relatively higher concentrations of COCs will be excavated prior to grading activities. Excavation trenches will be completed along the Dock D and Channel Dock walls following sheet pile installation to allow for tie-back anchors to be installed.

Site grading also will be required for paved driveway entrances, a railroad spur, a railroad crossing at Helberg Drive, concrete pavement along Dock D, and for general site drainage. A grading plan for the Property is discussed further in Section 3.7.2 of this RAP. It is expected that following final grading, the Property will be covered with a geotextile barrier and 12 inches of class 5 gravel.

Minimal trenching also will be required to install a shallow potable water supply line and electric utility lines. Caissons for light poles and bollards for ship tie-downs also will require small spot excavations during installation. These features and their anticipated locations are depicted on Figure 3.

Development plans include that the northern half of Slip D be dredged to allow for ships to access Dock D. The majority of the dredged sediments will be hauled off site to Erie Pier to be used as unregulated fill. A smaller area of sediments dredged from Slip D has been documented to have a BaP equivalent concentration greater than the MPCA Tier 2 industrial SRV standard. This sediment will be segregated, drained and made available for use on site or sent to a landfill – its disposition will be based on soil analytical test results or in accordance with Section 3.7.6 of this RAP.

2.3 Previous Property Assessments

Previous environmental assessments and soil investigation work has been performed at the Property. Previous environmental reports consist of the following:

- Environmental summary letter (Cargill, 1989)
- Soil Sampling report (TPT, 1989)
- Acquisition memorandum (Seaway Port Authority of Duluth, 1989)
- Phase I Environmental Site Assessment (ESA) report (AET, 1994a)
- Dismantling and Development Project report (LHB, 1994)
- Geotechnical Exploration/Review for Proposed Demolition and Redevelopment report (AET, 1994b)
- Phase II ESA report (AET, 1994c)
- Sediment Investigation of Duluth Harbor Area report (Somat, 2012)

- Sediment Sampling, Proposed Dredging Project, D Dock, letter report (EPC 2012).
- Additional Sediment Sampling, Proposed Dredging Project, D Dock, letter report (EPC 2013).
- Baseline Environmental report (ICECOR, 2013a)
- Visual inspection report (ICECOR, 2013b)
- Phase I Soil Sampling report (ICECOR, 2013c)
- Sampling report (ICECOR, 2013d)
- Phase I ESA report (Barr 2013)
- Phase II Investigation report (Barr 2014).

2.4 Summary of Previous Investigations / Sampling Results

Previous surface and soil boring sampling investigations conducted at the Property from 1989 through 2013 indicated:

- metals concentrations within common range (chromium greater than background but not
 warranting additional investigation) with the exception of a previously leased area in the
 southeast corner of the Property with arsenic and lead concentrations greater than Tier 2 SRVs
 (ICECOR, 2013c). Metals contamination at this former lease area will be addressed as a separate
 project (prior to development activities) and will not be incorporated as part of this RAP;
- volatile organic compounds (VOCs) less than Tier 1 SRVs and polychlorinated biphenyls (PCBs) less than detection limits;
- pesticides not detected above detection limits with the exception of "Dieldrin";
- petroleum compounds above MPCA guidelines; and
- concentrations of B(a)P greater than the Tier 2 SRV.

Previous sediment sampling investigations conducted in Slip D in 2012 and 2013 indicated:

one area of sampled sediment with a B(a)P equivalent concentration greater than the Tier 2 SRV.

The drinking water well was sampled in 1994 with no VOCs or pesticides greater than detection limits.

A Phase I ESA performed for the Property in 2013 (Barr, 2013) identified the following recognized environmental conditions (RECs): historical filling, historical chemical storage, historical PCB capacitors and transformers, historical and current above- and underground storage tanks, debris piles, historical train and truck unloading areas, a former private septic and stormwater system, documented contaminated soil at tenant lease parcels (Docks C and D) and at former yard waste storage facility lease

area, a former sawmill operation, historical powerhouse, storage of old railroad ties, and a water supply well and covered concrete pit.

Test pits were excavated during investigations conducted in 2013 at the locations shown on Figure 5. Soil results from the 2013 test pit samples are summarized in Sections 2.4.2 through 2.4.7 (ICECOR, 2013a,c,d and Barr, 2014).

Sediment samples were collected from Slip D during investigations conducted in 2012 and 2013 at the locations shown on Figure 5. Results of the sediment samples are summarized in Section 2.5 (EPC, 2012 and 2013).

2.4.1 Field Observations

Soil at the Property is composed of 9 to 25 feet of loose fill sand overlying native, undisturbed, medium to dense beach sands with some peat and organic layers (AET, 1994a). Typical test pit excavation materials included fill, poorly-graded sands, and well-graded sands (Barr, 2013). Fill was most often present from the surface to at least 2 feet below ground surface (bgs). Fill materials included poorly-graded sands, bricks, wooden planks, steel re-bar, asphalt pavement, coal, and "clinker-like" material. Fill often was poorly-graded sands with pebbles to cobble-sized earth materials. Well-graded sands typically were present at depths equal to or greater than 2 feet bgs and were usually fine- to medium-grained and light brown to brown in color. Some test pits encountered the water table at 4 to 4.5 feet bgs. There were no areas of discolored soil or sheens identified in the 2013 test pits conducted by Barr (Barr, 2014). Field headspace readings did not exceed 10 parts per million (ppm). An apparent chemical odor was noted at test pit TP-21 (Figure 5) at a depth of 1.5 to 2 feet bgs.

During a 1994 investigation, groundwater was observed at depths of 2 to 8 feet bgs (AET, 1994c). Groundwater flow at the Property is likely to vary due to changes in the St. Louis River or the Lake Superior lake level – seasonally as well as in response to normal lake seiche fluctuations; however, the predominant groundwater flow direction is expected to be to the east (Barr, 2013).

2.4.2 Soil - Herbicides and Pesticides

As part of the Barr 2013 investigation, a total of 15 soil samples (2 stockpile, 11 test pit composites, 2 test pit discrete) were collected from depths of 0 to 2 feet bgs for analysis for herbicides and pesticides (Barr, 2014). The only analyte detected greater than the method detection limits (MDLs) was Dieldrin – detected in the two stockpile samples and in one test pit sample (TP-14/15, Figure 5) – at concentrations less than the Tier 2 SRV. The MPCA has not established a Tier 1 Soil Leaching Value (Tier 1 SLV) for Dieldrin.

2.4.3 Soil - RCRA Metals

ICECOR conducted surface soil sampling in 2013 at a formerly leased area in the southeast corner of the Property (Dock D) that included analysis for metals (ICECOR, 2013c and 2013d). Of the eight shallow soil samples analyzed for metals, samples at two locations had arsenic concentrations greater than the Tier 2 SRV; the sample from one location had a lead concentration greater than the Tier 2 SRV. Metals

contamination at this formerly leased parcel of the Property will be addressed prior to development as a separate project and is not included as part of this RAP.

As part of Barr's Phase II investigation, a total of 14 soil samples (2 stockpiles, 12 test pits) were collected for metals analysis from depths of 0 to 2 feet bgs (Barr, 2014). Relatively low concentrations of arsenic, barium, cadmium, chromium, and lead were detected in the 14 samples. Concentrations of barium, cadmium, and lead at all locations were less than the Tier 1 Soil Leaching Values (Tier 1 SLVs). Concentrations of arsenic and/or chromium greater than the Tier 1 SLV but less than the Tier 2 SRV were detected at ST-01 and TP-05/06 (Figure 5). A Toxicity Characteristic Leaching Procedure (TCLP) chromium analysis was performed on the sample from TP-21/22 – the result was less than the MDL. It should be noted that the listed Tier 1 SLV and/or Tier 2 SRV criteria for chromium are listed for hexavalent chromium and not total chromium. Based on the previous site uses and setting, it is expected that the chromium detection is the non-hexavalent form.

2.4.4 Soil - Volatile Organic Compounds (VOCs) and DRO

ICECOR conducted shallow soil sampling at the northeast corner of the Property (Dock C) in 2013 that included analysis for VOCs and DRO (ICECOR, 2013a). The sampling locations, SS-1 through SS-8, are shown on Figure 5. Samples were collected at depths of 0' to 0.5' bgs. Of the 8 shallow soil samples collected, none of the samples had VOC concentrations greater than the Tier 1 SRVs. DRO was detected at concentrations equal to or greater than 100 mg/kg at 7 of the 8 samples (all but SS-3), ranging from 100 to 300 mg/kg (Figure 6).

ICECOR conducted shallow soil sampling at the southeast corner of the Property (Dock D) in 2013 that included analysis for VOCs and DRO (ICECOR, 2013d). Eight of the 9 samples were analyzed for VOCs; none of the detected VOC compounds exceeded Tier 1 SRVs. DRO was detected in all 9 of the samples and exceeded 100 mg/kg in 3 of the samples. DRO contamination at this formerly leased parcel of the Property will be addressed in a separate project and is not included as part of this RAP.

As part of Barr's Phase II investigation, a total of 26 soil samples were collected for analysis of VOCs and diesel range organics (DRO) from depths of 0 to 2 feet bgs (Barr, 2014). One sample (TP-21, Figure 5) had concentrations of petroleum-related VOCs greater than the Tier 1 SLVs (ethylbenzene, toluene, and total xylenes). No VOC concentrations exceeded the Tier 1 (Residential) SRVs (Tier 1 SRVs). DRO was detected at concentrations greater than 100 mg/kg at 10 test pit locations, ranging from 100 mg/kg to 1,000 mg/kg at TP-18 (Figure 6).

2.4.5 Soil - Semi-Volatile Organic Compounds (SVOCs)

A total of 5 soil samples were collected from depths of 0 to 2 feet bgs for analysis of SVOCs (Barr 2014). Non-PAH SVOCs were detected at concentrations less than the Tier 1 SRV at TP-11 and TP-20. No other non-PAH SVOCs were detected greater than the MDLs.

2.4.6 Soil – Polyaromatic Hydrocarbons (PAHs)

ICECOR conducted shallow soil sampling at the northeast corner of the Property (Dock C) in 2013 that included analysis for PAHs (ICECOR, 2013a). The ICECOR sampling locations, SS-1 through SS-8, are shown on Figure 5. The 8 soil samples were analyzed for PAHs -- samples at five locations had B(a)P equivalent concentrations greater than the Tier 2 SRV (SS-1, SS-2, SS-4, SS-7 and SS-8). Samples from SS-1 and SS-4 had B(a)P concentrations greater than the site specific Tier 2 SRV referenced in Section 1.1 of 6.0 mg/kg (Figure 7).

ICECOR conducted shallow soil sampling at the southeast corner of the Property (Dock D) in 2013 that included analysis for PAHs (ICECOR, 2013d). One of the 9 soil samples collected was analyzed for PAHs with a B(a)P equivalent concentration greater than the Tier 2 SRV but less than 6 mg/kg (MPCA, 2014). PAH contamination at this formerly leased parcel of the Property will be addressed prior to site development as a separate project and is not included as part of this RAP.

As part of Barr's Phase II investigation, a total of 26 soil samples were analyzed for PAHs from depths of 0 to 2 feet (Barr 2014). Individual PAH compounds were detected greater than MDLs in all 26 samples except for TP-04 and TP-15. Individual PAH compound detections were less than Tier 1 SLVs except for naphthalene at TP-11 and TP-18 Duplicate, both less than the Tier 2 SRV. B(a)P equivalent calculated concentrations were reported for all 26 samples. B(a)P equivalent concentrations were greater than the Tier 2 Short Term SRV at TP-11 and TP-18. B(a)P equivalent concentrations were greater than the Tier 2 SRV at TP-05, TP-07, TP-13, and TP-14 (Figure 7). The B(a)P equivalent concentration from the sample at TP-09 was greater than the Tier 1 SLV but less than the Tier 2 SRV. B(a)P equivalent concentrations were greater than 6.0 mg/kg at TP-05, TP-07, TP-11, TP-13, and TP-18.

2.4.7 Soil - Polychlorinated Biphenyls (PCBs)

A total of 6 samples were collected from depths of 0 to 2 feet for analysis for PCBs. PCBs were not detected greater than MDLs (Barr, 2014).

2.5 Slip D Sediments - PAHs

The sediments of Slip D along the wall of Dock D and Channel Dock were sampled during two events – November 2012 and September/October 2013 (EPC, 2012 and 2013). Four sediment cores were collected during each event for a total of 8 cores. For the two sampling events, a total of 15 sediment samples were submitted for laboratory analysis for Minnesota landfill metals, phosphorous, nitrate-nitrite, ammonia nitrite, Total Kjeldahl nitrogen, total organic carbon, PCBs, and PAHs. Of the 15 samples, the only analyte with a concentration greater than the Tier 2 SRV was B(a)P equivalent collected at SB-12-03 (28.5′-30′) in 2012 (Figures 5 and 7) with a concentration of 4.5 mg/kg. Although this concentration is below the MPCA approved site specific standard for BaP in soil of 6.0 mg/kg, it exceeds the Erie Pier permit standard of 3.0 mg/kg. Therefore, this sediment will be segregated and reused on site or hauled to a landfill.

3.0 Response Action Plan

This section of the RAP describes the tasks that will be implemented and the documentation that will be provided following completion of RAP activities.

3.1 General Approach and Operation

Exposure risk will be reduced by a combination of soil excavation, sediment dredging, onsite placement, offsite disposal as required, soil covering, construction water management, and anchoring of Dock D and the Channel Dock. Conceptual construction plans are presented on Figure 3. Based on the results of previous subsurface investigations for the Property, the identified COCs do not pose a vapor intrusion risk potential (see Section 3.2). In addition, current construction plans for the Property do not include potential receptors for vapor intrusion.

Areas with B(a)P equivalent concentrations exceeding 6.0 mg/kg (MPCA, 2041) will be excavated prior to grading at the Property, as described in Section 3.7.1 below. For Property redevelopment, soil excavation areas will include, at a minimum, two entrance areas to be paved from Helberg Drive, tie-back anchor points along Dock D and the Channel Dock (Figure 3), and a subcut (approximately 2 feet deep) along the face of Dock D extending landward as much as 70 feet to allow for base material placement for concrete paving. Site grading will be required for paved driveway entrances, addition of a railroad spur, a railroad crossing at Helberg Drive, concrete pavement along Dock D, installation of a small, pre-fabricated slabon-grade quard shack, and for general site drainage. Small spot excavations will be required for installation of caissons for light poles, installation of bollards for ship tie-downs to be installed along Slip D and the Channel Dock, and posts for new security fencing. Minimal trenching will be required to install a shallow water line and electric utility lines (Figure 3) and two catch basins on the northern half of the Property. Limited excavation will be required to ensure sufficient vegetation planting depth for the vegetated runoff buffer strip near the northwest corner of the Property. It is expected that following final grading, the Property will be covered with geotextile fabric and 12 inches of class-5 gravel providing a separation barrier to residual contamination. The repair of slip walls along Slip D, the harbor channel, and the eastern-most end of Slip C, will prevent contaminated fill from sloughing into Slip D and the channel.

Installation of the water line and the two catch basins will require removing soil beneath the water table (approximately 4 to 5 feet below current grade) necessitating management of construction water (consisting mostly of groundwater) onsite. Groundwater collected during construction dewatering will be collected and disposed of on-site through infiltration.

The DSPA will contract directly with a general contractor (Contractor) for the implementation of the response actions at the Property. The Contractor is required to be trained under the Occupational Safety and Health Administration (OSHA) Hazardous Waste Operations (HAZWOPER) regulations (29 CFR 1910.12c). An Environmental Representative will observe the Contractor during contaminated soil excavation activities. The Environmental Representative will document soil excavation limits, field screen excavated material, collect soil samples for environmental screening and analysis, and coordinate the implementation of potential contingency actions listed in the Construction Contingency Plan (CCP)

(Section 4). The Environmental Representative will also assist the Contractor with landfill profiling of any contaminated materials to be disposed off-site, including collecting additional analytical samples for landfill profiling purposes.

3.2 Contaminants of Concern, Cleanup Goals and Covering of Remaining Contaminated Soil

The COCs at the Property are metals, B(a)P equivalent (PAHs), and DRO. It is proposed that the site cleanup goals be the MPCA Tier 2 SRVs, with the exception of B(a)P equivalent which would have a cleanup concentration of 6.0 mg/kg (MPCA, 2014), with appropriate separation thicknesses overlying contaminants remaining in-place on-site and a geotextile delineation layer.

Impacted soils with COC concentrations exceeding the cleanup goals will be managed by removal, relocation, and/or covering. It is expected that following final grading, the Property will be covering with geotextile fabric and 12 inches of class-5 gravel. The following soil separation zones will be implemented.

Soil Separation Zones – Separation from contaminated soil will be achieved with import material meeting or on-site soils meeting Tier 2 SRVs and/or and B(a)P equivalent less than 6.0 mg/kg as follows:

- 1) <u>Green Space</u> from 0 to 6 inches below final grade surface. This area includes the stormwater vegetated buffer filtration to be used for treating general runoff. This area will be re-graded and planted with grasses to build a low point collection structure.
- 2) <u>Laydown Yard</u> from 0 to 12 inches below the final grade surface imported class-5 gravel will be placed on top of geotextile fabric. The geotextile fabric will provide a barrier and a delineation layer to separate the imported backfill from the residual contamination.
- 3) <u>Paved Areas</u> from top of paved surface to 2 feet below top of paved surface. The 2-ft separation distance thickness will include the pavement thickness.
- 4) <u>Pre-Fabricated Guard Shack Slab Footprint</u> 6 inches below building slab with a geotextile fabric layer beneath or 12 inches below building slab without a geotextile fabric layer. Estimated size of guard shack is 6 feet by 6 feet.
- 5) <u>Utility Corridors</u> It is_assumed that soil exceeding site specific standard for (B(a)P equivalent of greater than 6.0 mg/kg) will be removed during the remedial excavation outlined above, therefore, no special separation zones are proposed for utility corridors.

Excavated soil that does not exceed the Tier 2 SRVs or site-specific B(a)P equivalent cleanup criterion will remain on-site and be used to backfill areas needing fill. Clean soil from off-site (e.g. class 5, select granular barrow and/or top soil) will be sampled, or evaluated prior to delivery by the Engineer to document the soil quality prior to importing it to the Property. Overview of Response Action Tasks

The primary response actions for the Property are soil excavation, sediment dredging, onsite management and offsite disposal of soil and/or sediment, and placement of a soil cover over in-place impacted soil. Implementation of the RAP will involve completion of the following tasks:

Implement runoff and run-on control.

- Implement dust control procedures.
- Install security fence, clear, remove, and dispose of surface debris from the Property.
- Excavate areas of soil with COC concentrations exceeding Tier 2 SRVs, except for a B(a)P equivalent concentration cleanup criteria of 6.0 mg/kg (MPCA, 2014).
- Conduct additional sampling on the Property as needed including additional sampling of sediments in Slip D.
- Segregate excavated soils for management on-site or off-site.
- Manage contaminated soil below the Tier 2 SRVs (and B(a)P equivalent concentrations greater than 6.0 mg/kg (MPCA, 2014)) on-site with appropriate cover or separation layer.
- Dispose contaminated soil and materials off-site at an approved, permitted landfill.
- Dispose of construction dewatering-generated groundwater on-site by infiltration.
- Backfill soil on-site, as necessary, to the depths required in the redevelopment plan.
- Repair, replace or install sheetpile as necessary along the wetted perimeter of Dock D and the Channel Dock, and a small portion of Dock C of the Property to laterally retain site fill soils and prevent their erosion into the harbor and/or Slip D.

3.3 Additional Sampling - Sediment in Slip D

Based on the results of previous sediment investigations in Slip D, additional sampling and investigation will be necessary to define the extent of BaP equivalent contamination around SB-03-12. A separate sediment investigation work plan will be submitted for MPCA review and approval. The dredging portion of the construction will not occur until the results of this additional investigation are available. Upon completing the initial remedial excavation, additional excavation sidewall soil sampling will be completed in the areas targeted for response action excavation. Excavations will continue until sidewall samples indicate results that are less than the Tier 2 SRVs (and B(a)P equivalent concentrations less than 6.0 mg/kg (MPCA, 2014)). Soil and sediment sampling are discussed in Section 3.7.1 and Section 3.7.6 below.

3.4 Dust Control Procedures during Earthwork

Standard dust control practices will be implemented as necessary during excavation, stockpiling, hauling, and backfilling activities. Dust control may consist of watering earthwork areas to maintain a soil moisture content favorable to dust suppression. Open excavation and stockpile surface areas will be minimized to control dust. Appropriate health and safety air monitoring will also be conducted at the Property. The air monitoring will be performed according to the Contractor's Site Safety Plan to be developed by the Contractor. At a minimum, the air monitoring plan will include monitoring for particulates in the work zone during the response action excavation activities.

3.5 Erosion Control and Stormwater Management

Erosion control measures shall consist of silt fences, straw bales and/or other control measures implemented to prevent erosion and transport of contaminated materials off-site and to protect surface water quality. Care will be taken to divert any stormwater run-off from open excavation areas. Berms, ditches, or other control measures may be constructed to direct run-off away from the excavation area and contaminated materials. Stormwater management planning and design will be coordinated by the Engineer with the MPCA and the City of Duluth. A stormwater management plan will be submitted to the City of Duluth.

The sheet pile face to be installed along D Dock and Channel Dock will serve to rehabilitate and reinforce the failing dock face both during construction and into the future, thereby, providing and assisting in erosion control during construction excavations. The in-place sheet piling along with erosion control BMPs will be used to ensure erosion is controlled and contained and will prevent migration of contaminated material into Slip D and/or the harbor during construction.

3.6 Contaminated Soil Excavation, Removal, Transport, and Disposal

3.6.1 Limited Remedial Soil Excavations

Several areas with COC concentrations in the soil that exceed Tier 2 SRVs were identified during previous subsurface investigations (Figure 7). Prior to construction grading activities at the Property, approximately eight areas will be excavated to remove soil with B(a)P equivalent concentrations exceeding the site-specific criterion of 6.0 mg/kg (MPCA, 2014): in the vicinity of TP-5, TP-7, TP-11, TP-13, TP-18, and SS-1 and SS-4 in the northeast corner of the Property. In addition, an area at TP-21 will be excavated in order to address petroleum hydrocarbon detections above Tier 1 SLVs. Figure 8 shows the proposed locations of limited remedial soil excavations. The primary goal of the excavations is to remediate soils with B(a)P equivalent concentrations greater than 6.0 mg/kg, but soils with elevated DRO concentrations will also be removed as a result of the B(a)P excavations. Concentrations of DRO greater than 100 mg/kg may be attributable to the presence of B(a)P equivalent compounds.

Based on previous investigation results, it is estimated that each of the eight remedial excavations will be a minimum of 15' by 15' by 4' (depth) in size. At each excavation, one soil sample will be collected from each of the four sidewalls and will be submitted for analysis to obtain a B(a)P equivalent concentration; additionally, the soil samples from the area of TP-21 will be analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX). The excavations will remain open until analytical results are received from the laboratory. The estimated turn-around time for the laboratory analysis is one week or less. Temporary soil stockpiles will be managed in accordance with state regulatory requirements as discussed in Section 3.7.4. At a given excavation, if the four sidewall samples have B(a)P equivalent concentrations less than 6 mg/kg (and at TP-21, BTEX concentrations less than the Tier 1 SLVs), the excavation will be backfilled with graded material from the Property or with off-site, imported fill.. If a sidewall sample has a B(a)P concentration greater than 6 mg/kg or BTEX concentrations greater than Tier 1 SLVs, that sidewall(s) of the excavation will be extended a distance of 10 feet in that direction and a confirmation sidewall soil sample will be collected and analyzed for B(a)P compounds, and/or BTEX. Excavated soil with B(a)P

equivalent concentrations greater than 6 mg/kg or with BTEX concentrations greater than Tier 1 SLVs will be removed from the Property for disposal at a permitted, approved landfill.

Based on previous investigation results, it is estimated that at two of the eight remedial excavations it will be necessary to extend the excavation 10 feet in one direction. Based on the available investigation information, the estimated total amount of excavated soil with B(a)P equivalent concentrations exceeding 6 mg/kg and/or BTEX concentrations greater than Tier 1 SLVs is:

```
6 excavations with dimensions of 15' x 15' x 4' = 5,400 cubic feet = 200 cubic yards
2 excavations with dimensions of 25' x 15' x 4' = 3,000 cubic feet = 111 cubic yards
Estimated Total 311 cubic yards
```

Standard construction equipment will be used to excavate contaminated soil in the unsaturated zone. Loose debris encountered during contaminated soil excavation will be disposed offsite as contaminated material at a permitted, approved landfill. Buried foundation walls are expected to be encountered during construction activities, this concrete material and masonry will be separated from the soil and hauled to a demolition landfill.

3.6.2 Temporary Soil Stockpiles, Transport, and Disposal

Excavated soil from the eight remedial excavation described in Section 3.7.1 above will be placed in a temporary soil stock pile area located on the Property. Stockpile locations will be determined in the field based on proximity to the work area(s), and protection from surface water drainage. A flat hard surface such as a former building slab will be used if accessible to the work area and equipment. Ten mil-thick polyethylene sheeting (poly) will line the bottom, with a berm of woodchips or sand ringing the perimeter. Soil will be placed on the poly, be covered with poly that is weighted down to hold the cover in place. The stockpiled soil will be maintained in the covered stockpile until the Contractor can arrange for transport to the approved licensed landfill for off-site disposal.

It is anticipated that multiple stockpiles may be created based on field observations and screening results and construction work sequencing. Separate stockpiles may be used for managing soils of different textures, coloration, suspected contaminant, field screening observations, or debris content. If required for disposal characterization purposes, the stockpiles will be sampled and analyzed to characterize the particular COCs to determine its appropriate offsite or onsite management. Stockpiles will likely be composite samples from multiple, individual, small stockpiles.

Trucks transporting contaminated soil off-site from stockpiles for disposal will be covered during transportation. Waste characterization and disposal facility profiling will be completed prior to removal of the soil from the stockpile.

3.6.3 Dredged Sediments, Slip D

Sediment will be dredged to a depth of 29 feet in the northern half of Slip D to allow for ship access and docking in the slip. Dredged sediments from the area previously identified with B(a)P concentrations exceeding the Tier 2 SRV (SB-12-03) will be segregated on the Property separately from other dredged

sediment. Dredged material exceeding the Tier 2 SRV will be contained in an upland area or on a water-tight barge to drain and/or be solidified as needed.

Sampling and laboratory analysis of the dried / solidified dredged sediments will be conducted per MPCA Risk Based Site Characterization and Sampling Guidance (MPCA, 1998). If the segregated soil meets the on-site reuse criteria of less than 6.0 mg/kg, it then will be moved from temporary stockpile and placed in accordance with this RAP. Dredged sediment that contains B(a)P concentrations greater than 6.0 mg/kg will be disposed of at a permitted, approved landfill.

The area of dredged sediment to be segregated will be determined based on additional sediment core borings to be installed around SB-03-12. A work plan for this additional sediment investigation will be submitted to the MPCA for review and approval. Based on the assumed average thickness of the contaminated sediments in the vicinity of SB-03-12 of approximately 5 feet, and assuming the contamination is limited to a radius of 50 feet or less, it is expected that approximately 1000 yards of dredged sediments will be segregated and characterized as detailed above. The remaining dredged sediment with B(a)P concentrations less than the Tier 2 SRV will be hauled to Erie Pier by barge or truck.

3.7 On Site Soil Management Activities

3.7.1 Grading

Following remedial soil excavations, grading activities will take place at the Property. A grading plan is presented on Figure 9, including proposed locations for placement of soil meeting the on-site reuse criteria less than Tier 2 SRVs and/or 6.0 mg/kg BaP equivalent. Site grading and subcutting will be required for paved driveway entrances, addition of a railroad spur, a railroad crossing at Helberg Drive, concrete pavement along Dock D, and for general site drainage. The topography of the Property generally will slope towards Dock C to match existing conditions at Dock C. Areas of hard surface paving will be added to the Property along Dock D. It is expected that following final grading, the Property will be covered with geotextile fabric and 12 inches of imported class-5 gravel, except where new paving will be installed.

3.7.2 Construction Excavation

For construction/redevelopment soil excavation areas will include, at a minimum, two entrance areas to be paved from Helberg Drive, and tie-back anchor points along Dock D and the Channel Dock. The exact number and location of the tie-back trench excavations will be determined during construction based on location of old foundations, etc. It is estimated that tie-back trench excavations will be placed every 9 feet at a distance of approximately 90 feet from the dock walls (along Dock D and the Channel Dock) and will be disturbed to a depth of 4 feet.

Small spot excavations (approximately 6' x 6' x 5') will be required for installation of bollards for ship tiedowns to be installed along Slip D and the Channel Dock. Installation of caissons for light poles, and posts for new security fencing likely will require augering with depth and diameter for light pole foundations of approximately 6 feet deep and 24 inches in diameter. Fence post foundations will be approximately 12 inches in diameter and 3 feet deep. Minimal trenching will be required to install a shallow water line and electric utility lines (Figure 3). Additional excavation will be conducted for catch basins and outfall structures near the Dock C side. Soil removed for these activities will be placed back into the excavation from which it originated or graded out to subgrade elevation. Where the depth of excavation is greater than the water table level, special considerations will be given to managing construction water and to drain saturated excavated soil for management.

3.7.3 Sheet Pile Installation

Interlocking sheet pile will be installed along the perimeter of Dock D and the Channel Dock and a small length of Dock C as reinforcement of the existing deteriorating dock walls and to repair areas where existing dock walls have failed or collapsed. The new sheet piles will retain onsite fill soil from sloughing or eroding into Slip D or the harbor and prevent transport of potentially contaminated sediments to the waterway.

3.8 Construction Water Management

The groundwater table lies an estimated four to five feet below ground surface and excavation of contaminated soils could require excavation below the water table, particularly in the water utility line and catch basin installation areas. In addition, stockpiles of dredged sediment will be saturated. Excavated and dredged saturated soil and sediments will need to be dewatered so that they can be placed and compacted onsite or disposed offsite. The construction dewatering water from the utility and catch basin excavations will be re-infiltrated on site.

Management of water drained from excavated/dredged soil/sediment may involve construction of bermed areas where saturated soil/sediment can be placed to allow for drainage, water capture, conveyance of the water and infiltration back into the groundwater through existing Property soil. Analytical Sampling

Previous investigation sample data will be used to document remaining soil impacts in areas where excavation is not necessary and only a gravel covering is planned. Additional sampling will be completed during the eight remedial excavations from the sidewalls to document that residual concentrations are below the Tier 2 SRVs (B(a)P less than 6.0 mg/kg).

Waste characterization samples will be collected as necessary for landfill profiling purposes. The sampling frequency and parameter list will be developed with the offsite disposal facility. It is anticipated that additional samples will be requested by the offsite disposal facility for analysis of arsenic, chromium, and lead by the Toxicity Characteristic Leaching Procedure (TCLP) due to elevated levels documented during previous investigations.

If water generated by construction dewatering activities is to be discharged or disposed of off-site, it will be sampled and analyzed for COCs, if required. Laboratory analytical services will be performed by a Minnesota Department of Health-certified laboratory.

3.9 Offsite Disposal of Excavated Materials

It is anticipated that contaminated materials planned for off-site disposal will be staged, drained or solidified as necessary, and loaded into trucks for offsite transport and disposal.

Waste characterization and disposal facility profiling will be completed prior to transporting materials offsite. All trucks transporting contaminated soil and debris will be covered with tarps prior to their departure from the Property. It is anticipated that contaminated materials will be disposed of in a local, contractor-selected, permitted non-hazardous waste landfill such as Veit, SKB, or Waste Management.

3.10 Institutional Controls

Since the goal of this RAP is to remove soil exceeding B(a)P of 6.0 mg/kg it is anticipated that no institutional controls will be required following the implementation of this RAP.

3.11 Documentation of Response Actions

The implementation of the proposed RAP will be documented in a Response Action Implementation (RAI) Report after the conclusion of response action activities. The RAI Report will include drawings showing the excavation area and dredging area limits, depths of the excavations and dredged areas, and the soil and sediment sampling locations. Data from documentation and waste profile samples will be included in the RAI Report. Excavation/dredged quantities and disposal facilities will be documented along with onsite management details.

3.12 Permitting

Permits necessary to perform the proposed activities at the Property will be obtained by LHB and may include, but are not limited to:

- Dredging (MPCA, to be used as fill)
- Stormwater NPDES Permit (to be applied for just prior to construction)
- MNDNR Water Works Permit (obtained)
- Army Corps of Engineer Permit (obtained)

3.13 Implementation Schedule

The project will be advertised for bid in July of 2014. The bids will be due in August and the project will be awarded in mid-September 2014. It is anticipated that the remedial excavation work will be one of the first activities completed by the Contractor. The additional sediment investigation in the vicinity of SB-03-12 likely will take place in June or July 2014 and this RAP will be amended based on the results of that investigation. The dredging of Slip D likely will not occur until the summer or autumn of 2015.

4.0 Construction Contingency Plan

The CCP describes development of a project-specific health and safety plan and environmental construction contingency measures that may be necessary to protect human health and the environment during the planned Property development construction work.

4.1 Site Safety Plan

The contractor selected to implement the response action construction activities will be required to prepare a *Site Safety and Site Contingency Plan* to address requirements of 29 CFR 1910.120. Contractor personnel completing the response action excavations and related activities that involve potential contact with contaminated materials will be required to provide documentation of appropriate training as described in 29 CFR 1910. Copies of project health and safety documents will be made available to the MPCA and maintained onsite. The Contractor will be required to derive appropriate "action levels" for identified contaminants on-site and conduct air monitoring as necessary to identify and quantify levels of hazardous substances with periodic monitoring to assure that proper protective equipment is being used.

4.2 Construction Contingency Plan

The RAP described in this report was developed for contaminated soils that are known to be present on the Property. Although unexpected, contaminated soil that is different than anticipated (dissimilar soils) based on the Phase II results, underground storage tanks, drums/containers, asbestos-containing materials, other debris or water may be encountered in the excavations. Such contingent conditions will be managed as follows.

4.2.1 Dissimilar Contaminated Soil

If dissimilar contaminated soil is encountered during excavation activities at the Property (based upon visual evidence of contamination, and/or odor), excavation and earthwork activities of the potentially impacted area will temporarily cease until the owner's Environmental Representative familiar with the CCP is made aware of the situation.

The owner's Environmental Representative shall be present during the excavation of dissimilar soils to screen soils, classify materials, and collect analytical samples. If it is decided the material should be removed/segregated, dissimilar soil will be staged to a stockpile. A dissimilar contaminated soil staging area (CSSA) will be constructed by placing a 10-mil-thick (minimum) plastic sheet on the ground and constructing a 6-inch-high soil berm around the perimeter. The plastic will extend beyond the perimeter berm to prevent runoff from, and runon to, the dissimilar CSSA. A 10-mil-thick (minimum) plastic cover will be placed over contaminated soil that is stockpiled in the dissimilar CSSA. The cover will extend beyond the perimeter soil berm and it will be secured and maintained in place until disposition of the stockpile soil has been determined by the owner's Environmental Representative.

The excavation will proceed after appropriate notification has been made. During excavation, dissimilar contaminated soil will be segregated based on appearance, odor, headspace testing and other field screening methods. Contaminated soil will be transported directly to the dissimilar CSSA.

4.2.2 Underground Storage Tanks

If unexpected USTs are encountered during excavation activities at the Property, earthwork activities will be temporarily ceased until the owner and/or owner's Environmental Representative is notified. Following appropriate notification, a certified tank remover and onsite representative will be present to oversee the removal of the UST. If fluids are present in the UST, they will be removed and characterized for proper disposal, generally prior to tank removal. The UST will then be removed in accordance with MPCA guidelines by a licensed contractor. After the UST is emptied and removed it will be transported to an approved facility for proper recycling or disposal. The Environmental Representative or other qualified representative will collect appropriate tank excavation soil samples for submittal to an appropriate analytical testing laboratory for guidance-required parameter analysis. Tank removal documentation or other reports will be submitted to the MPCA to document the completed tank removal activities.

4.2.3 Drums, Containers or Other Waste

If drums, containers or other waste items are encountered during excavation activities, earthwork activities will temporarily cease until the Environmental Representative is made aware of the situation. The owner's Environmental Representative shall be present for removal of the drums, containers or other waste. Waste items shall be individually removed and their condition assessed. If excavated drums/containers are not in good condition (e.g., severe rusting, structural defects, leaking, etc.), the materials will be transferred to a new drum or other appropriate container or temporarily placed on plastic sheeting similar to Section 4.2.1. Prior to transport, these containers will meet the appropriate requirements of United States Department of Transportation (DOT), U.S. Occupational Safety and Health Administration (OSHA), and U.S. Environmental Protection Agency (EPA) regulations for the containment and transport of wastes.

Intact drums and repacked containers will be transported to a storage area and placed in roll-off boxes or other approved, appropriate containment areas. If appropriate, liquid wastes may be transferred to and bulk-stored in tanks. Each roll-off box or containment area will be lined to contain leaks, spills, or accumulated precipitation. Each roll-off box or containment area will be of sufficient capacity to contain the volume in drums or containers. Each roll-off box or containment area will be covered to prevent accumulation of precipitation.

4.2.4 Suspect Asbestos-Containing Materials (ACM)

If piping, debris or soil containing potential ACM is encountered during excavation, excavation activities in the affected location shall temporarily cease and the owner's Environmental Consultant shall be notified. Visual inspection by a MDH certified and licensed asbestos inspector will be conducted to determine if the materials encountered are ACM and to assess the proper separation, handling and disposal of the material. Samples will be collected by the certified asbestos inspector. If the material contains ACM, a certified asbestos abatement company will remove the material and provide the proper handling and

disposal of ACM in accordance with state and federal regulations. Proper notifications will be made to the MPCA.

All asbestos-related work will be conducted in accordance with Minnesota and Federal National Emission Standards for Hazardous Air Pollutants (NESHAP) requirements. Monitoring of airborne asbestos concentrations will be conducted in accordance with the Occupational Safety and Health Administration (OSHA) asbestos requirements for the construction industry, found in 29 CFR 1926.1101 (adopted by reference by Minnesota OSHA).

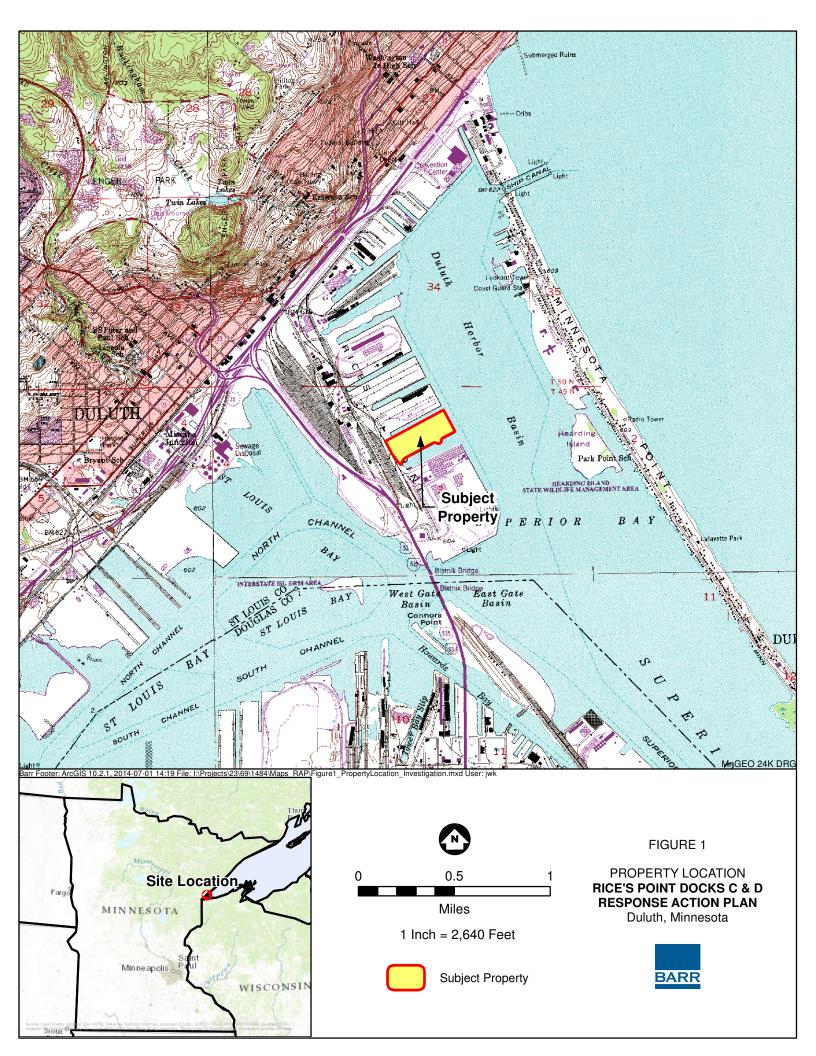
If significant quantities of ACM or ACM and soil mixtures are encountered during the excavation activities, an Asbestos-Containing Material Emission Control Plan will be developed and implemented for the work. The contractor will make required Agency notifications and implement appropriate operating procedures during excavation and abatement work to ensure protection and safeguard from asbestos exposure of the workers, visitors, employees and the environment. All soil containing potential ACM will be immediately wetted to minimize asbestos fiber release during excavation and loading activities. Soils will be segregated and disposed of at an offsite landfill based on visual observations and analytical testing results.

4.2.5 Excavation Water Management

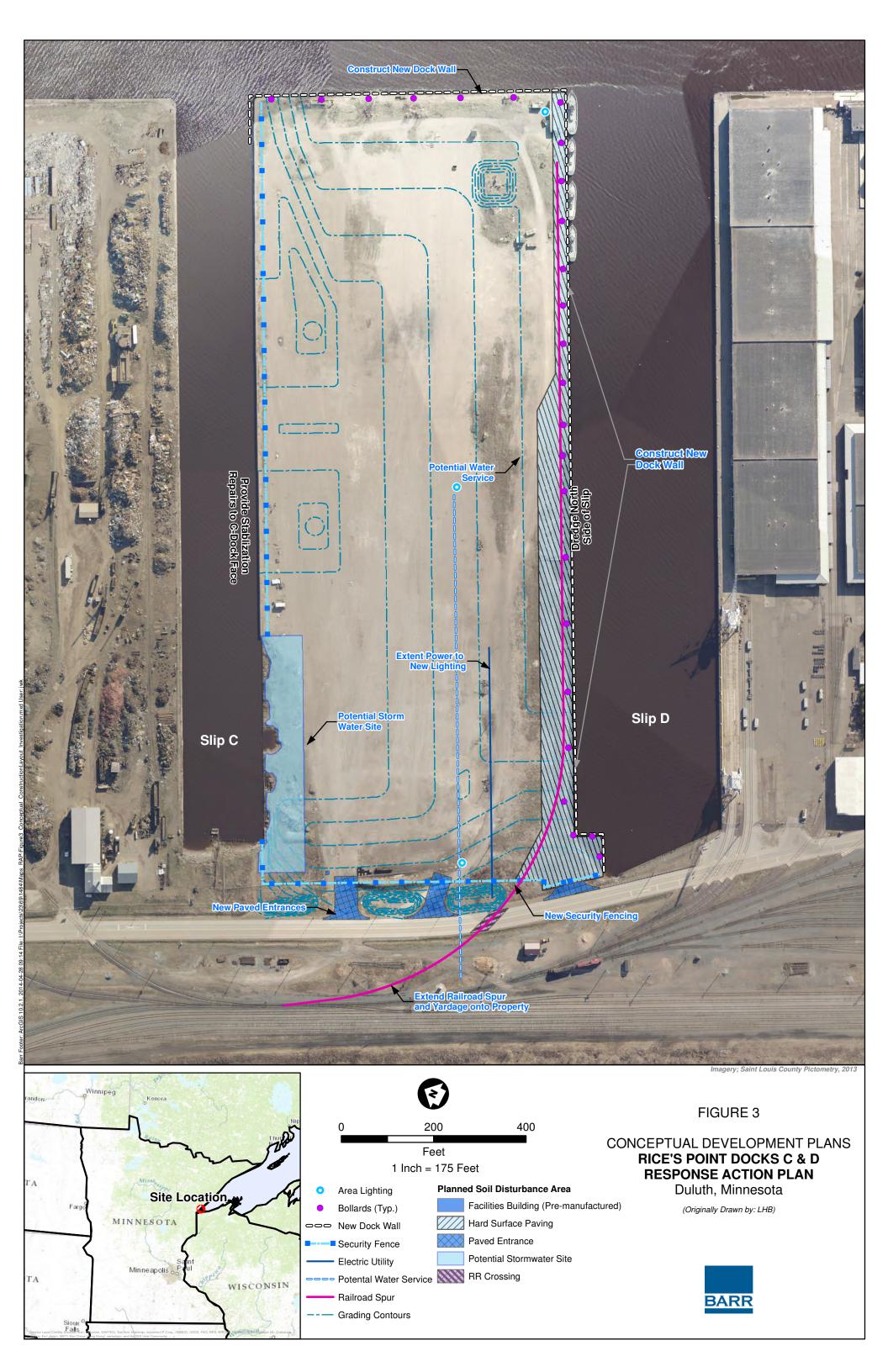
If excavation water levels become too high after a storm event or excavation water COCs exceed desired concentrations then all activities in the affected location shall temporarily cease and the owner's Environmental Representative shall be notified.

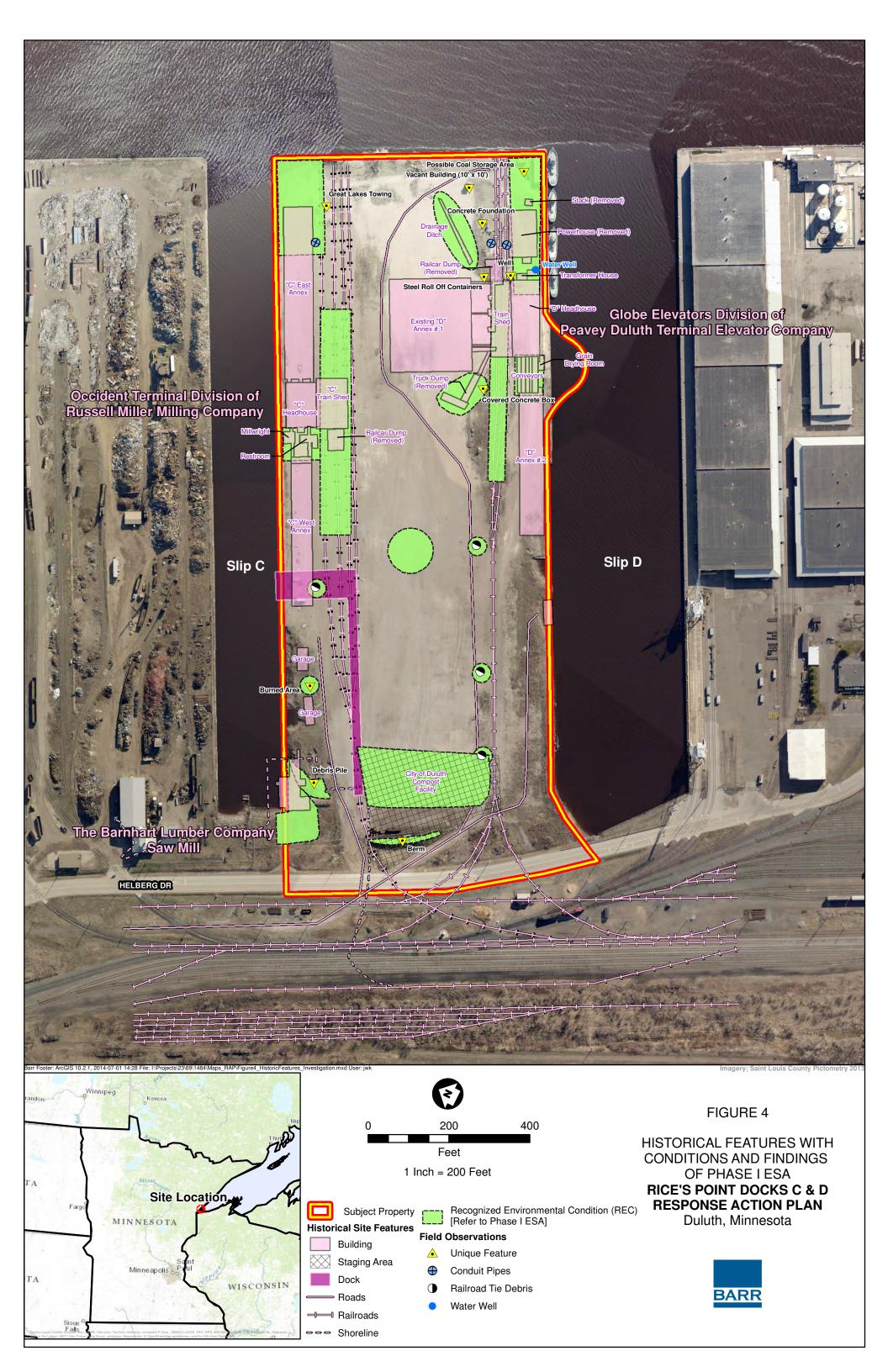
Testing and possible treatment of accumulated water may be necessary to obtain a permit to discharge the water to the sanitary sewer or re-infiltrate back into site soil. If necessary, the construction contractor will obtain a sanitary sewer discharge permit from the City of Duluth for discharge to the sanitary sewer system and perform all necessary testing, treatment and flow measuring in accordance with the permit requirements. The Environmental Representative can assist as necessary, with collecting appropriate water samples.

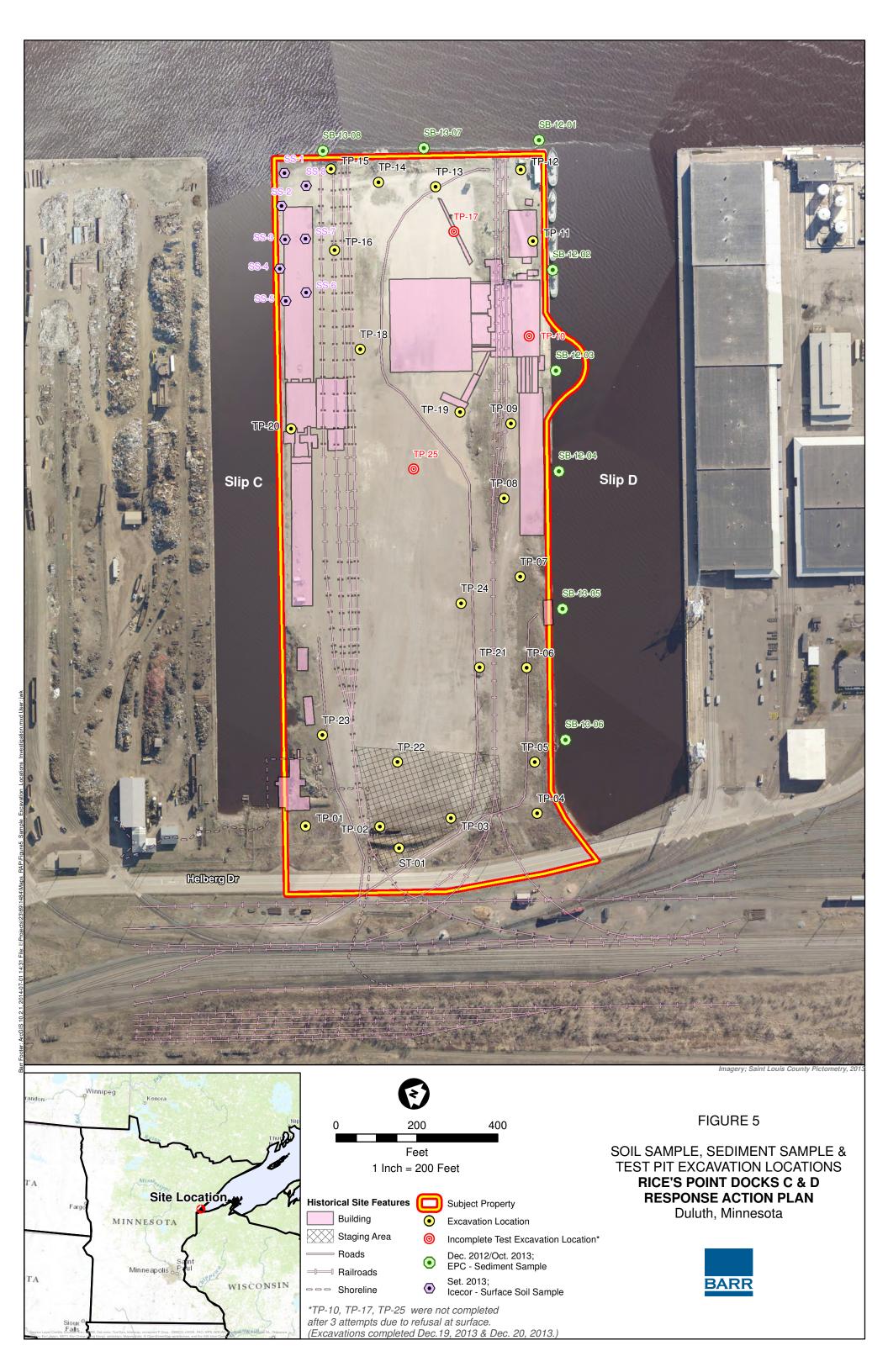
4.2.6 Other Buried Debris

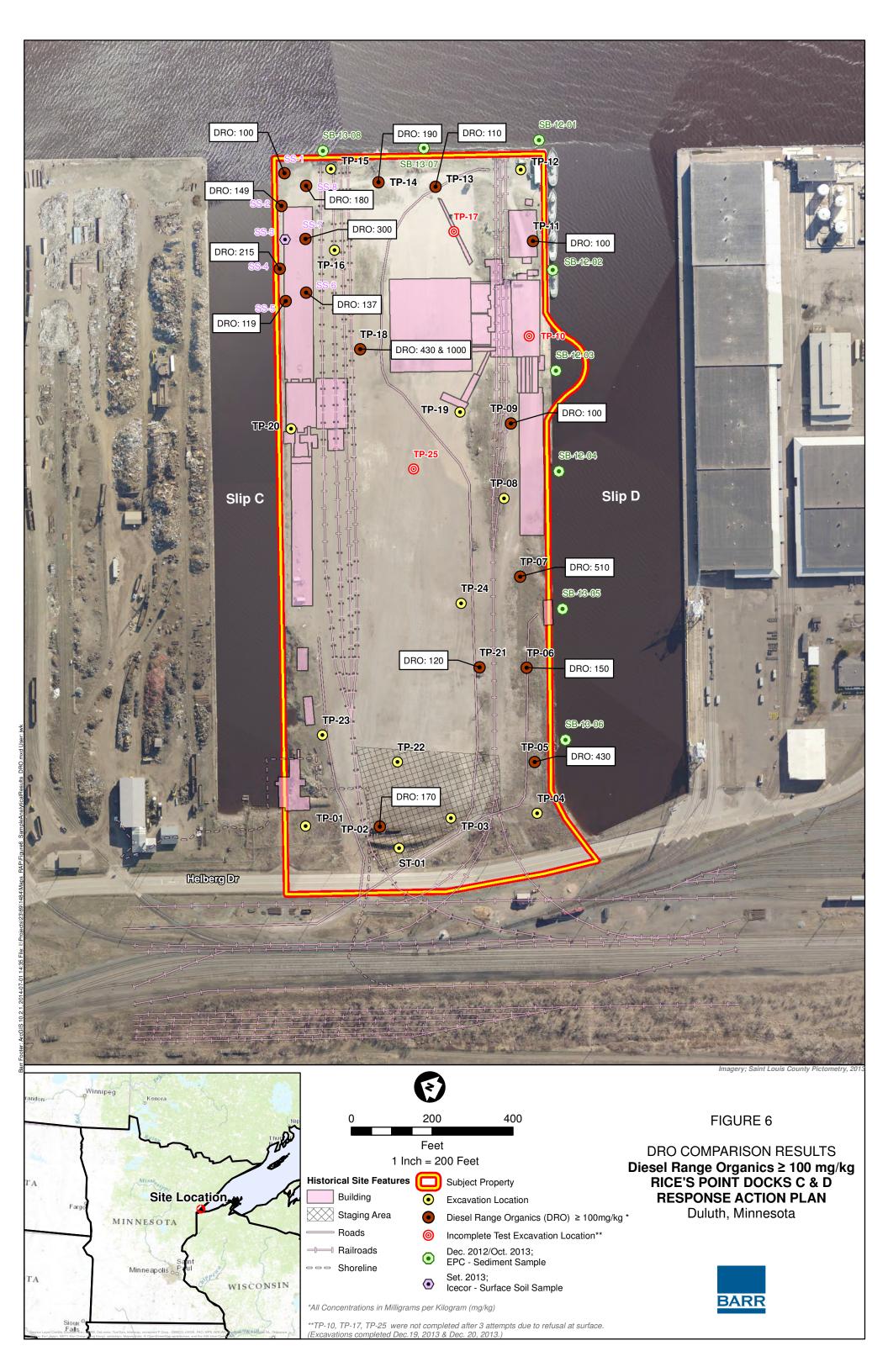

Concrete foundations or structures, asphalt or bricks buried in fill and other buried debris (greater than 50 percent by volume in soil) in the excavation area will be stockpiled separately from the excavated soil and other materials. The debris will be transported offsite for disposal in an approved landfill (i.e. demolition landfill facility).

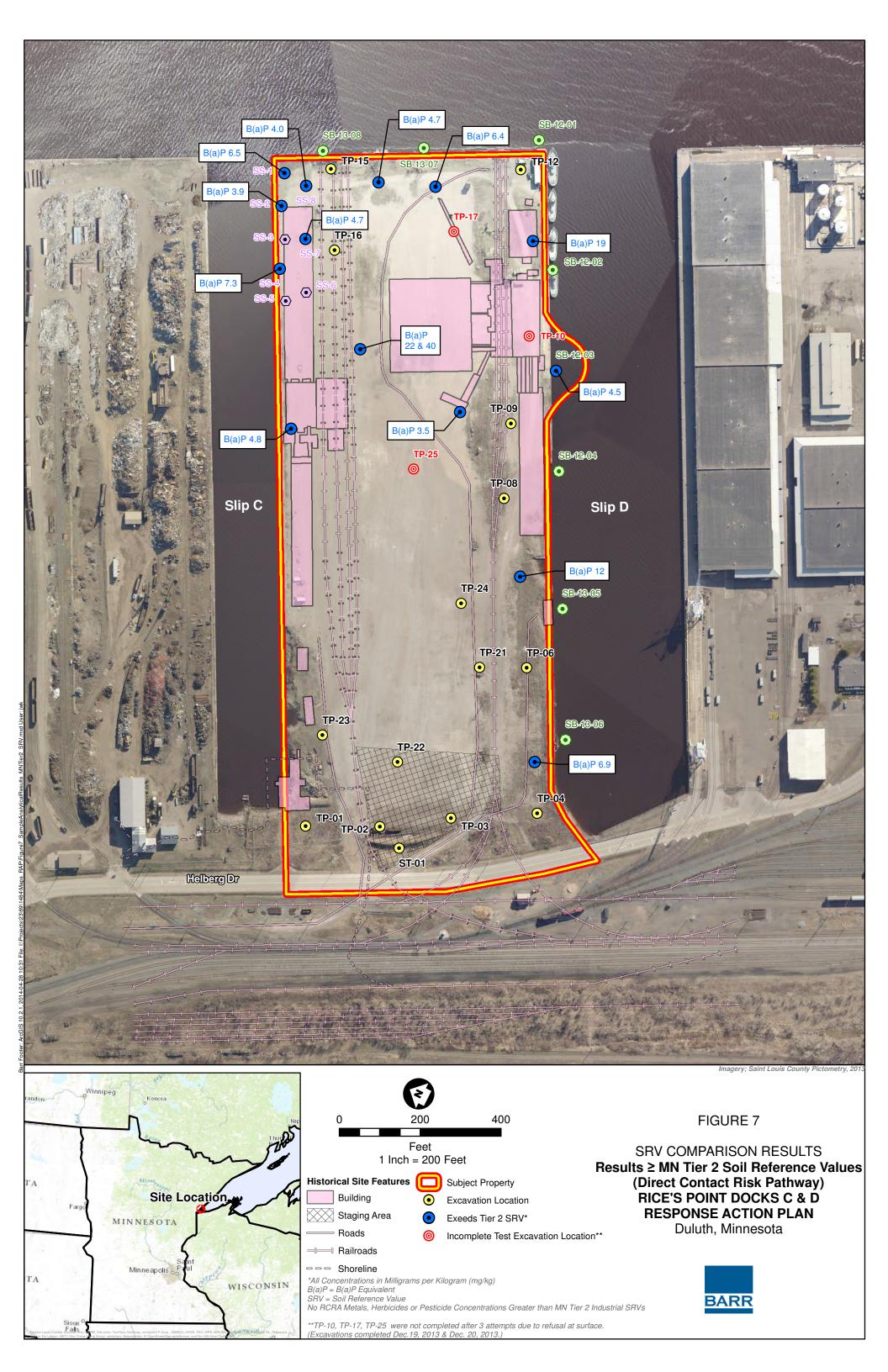
5.0 References

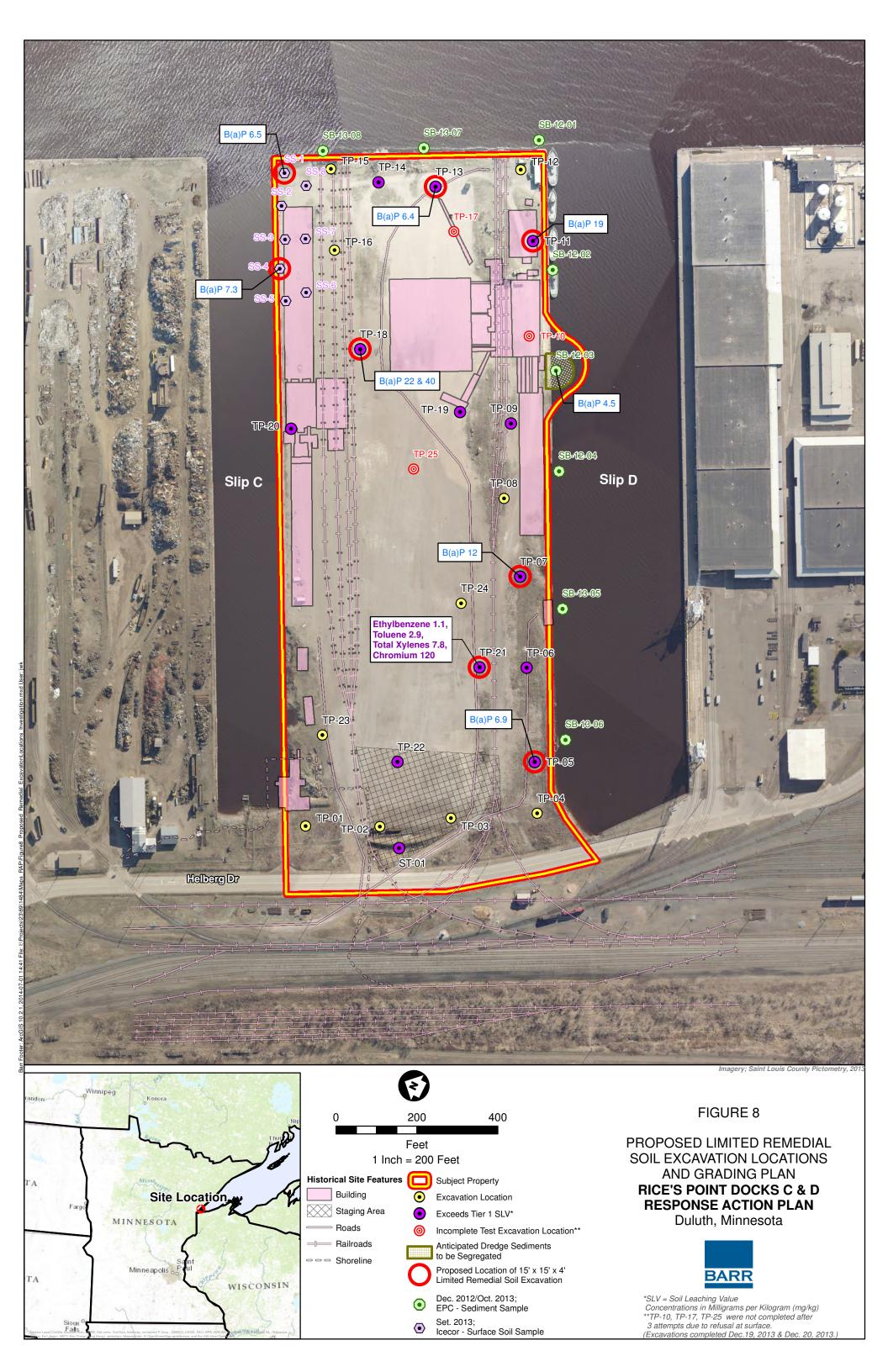

- American Engineering Testing, Inc., 1994a. "Report of Phase I Environmental Site Assessment for Garfield C & D, 800 Arthur Avenue, Duluth, Minnesota, AET #94-7770". Prepared for Seaway Port Authority of Duluth, September 1, 1994.
- AET, 1994b. "Report of Geotechnical Exploration/Review for Proposed Demolition and Redevelopment, Cargill "C" and "D" at the Port of Duluth, Duluth, Minnesota, AET #94 7728". Prepared for LHB Engineers and Architects, November 3, 1994.
- AET, 1994c. "Report of Phase II Environmental Site Assessment, Garfield C & D Property, AET Job #94-7815". Prepared for Seaway Port Authority of Duluth, November 16, 1994.
- Barr Engineering Company (Barr), 2013. "Phase I Environmental Site Assessment, Rice's Point Docks C & D, Helberg Drive, Duluth, MN". Prepared for LHB Corporation, December 2013.
- Barr, 2014. "Phase II Investigation Report, Rice's Point, Docks C & D, Helberg Drive, Duluth, Minnesota". Letter report prepared for LHB Corporation, February 18, 2014.
- Cargill, 1989. Letter to the Seaway Port Authority of Duluth addressing environmental issues at the Property. December 6, 1989.
- EPC Engineering & Testing (EPC), 2012. Letter report to LHB Corporation, Sediment Sampling Results, Proposed Dredging Project, Duluth Seaway Port Authority, D Dock, Duluth, Minnesota. December 6, 2012.
- EPC, 2013. Letter report to LHB Corporation, Additional Sediment Sampling (2013), Proposed Dredging Project, Duluth Seaway Port Authority, D Dock, Duluth Minnesota. October 22, 2013.
- IC Environmental Corporation (ICECOR), 2013a. "Baseline Environmental Report. Great Lakes Towing Lease Area, Garfield Pier Dock C, Duluth, Minnesota". Prepared for the Duluth Seaway Port Authority, September 15, 2013.
- ICECOR, 2013b. "Visual Inspection Report. Duluth Seaway Port Authority, Garfield Pier Dock D, Duluth, Minnesota". November 5, 2013.
- ICECOR, 2013c. "Phase I Soil Sampling Report. Duluth Seaway Port Authority, Garfield Pier Dock D, GLTC Lease Area, Duluth, Minnesota". December 8, 2013.
- ICECOR, 2013d. "Sampling Report. Duluth Seaway Port Authority, Garfield Pier Dock D, Sea Service Lease Area, Duluth, Minnesota". December 9, 2013.
- LHB Corporation (LHB), 1994. "Garfield C & D Dismantling and Development Project". November 1994.

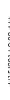

- Minnesota Pollution Control Agency (MPCA), 1998. "Draft Guidelines: Risk Based Site Characterization and Sampling Guidance". September 1998.
- MPCA, 2012. "Managing Dredge Materials in the State of Minnesota". Document number: wq-gen2-01. September 2012.
- MPCA, 2014. Rice's Point Docks C&D VP30770 Meeting with MPCA, LHB, DSPA and Barr, February 25, 2014
- Seaway Port Authority of Duluth, 1989. "Acquisition of Cargill C & D". Memorandum prepared for Commissioners regarding Twin Ports Testing soil sampling results, December 29, 1989.
- Twin Ports Testing, Inc., 1989. "Soil Sample Results". Letter report prepared for Cargill, Inc. documenting soil sampling conducted on November 3, 1989. December 22, 1989.
- Somat Engineering, 2012, "Sediment Investigation Report: St. Louis River, Duluth Harbor, Duluth, Minnesota". Prepared for U.S. Army Corps of Engineers & Minnesota Pollution Control Agency (MPCA) in August 2012. Release by MPCA April 2013.

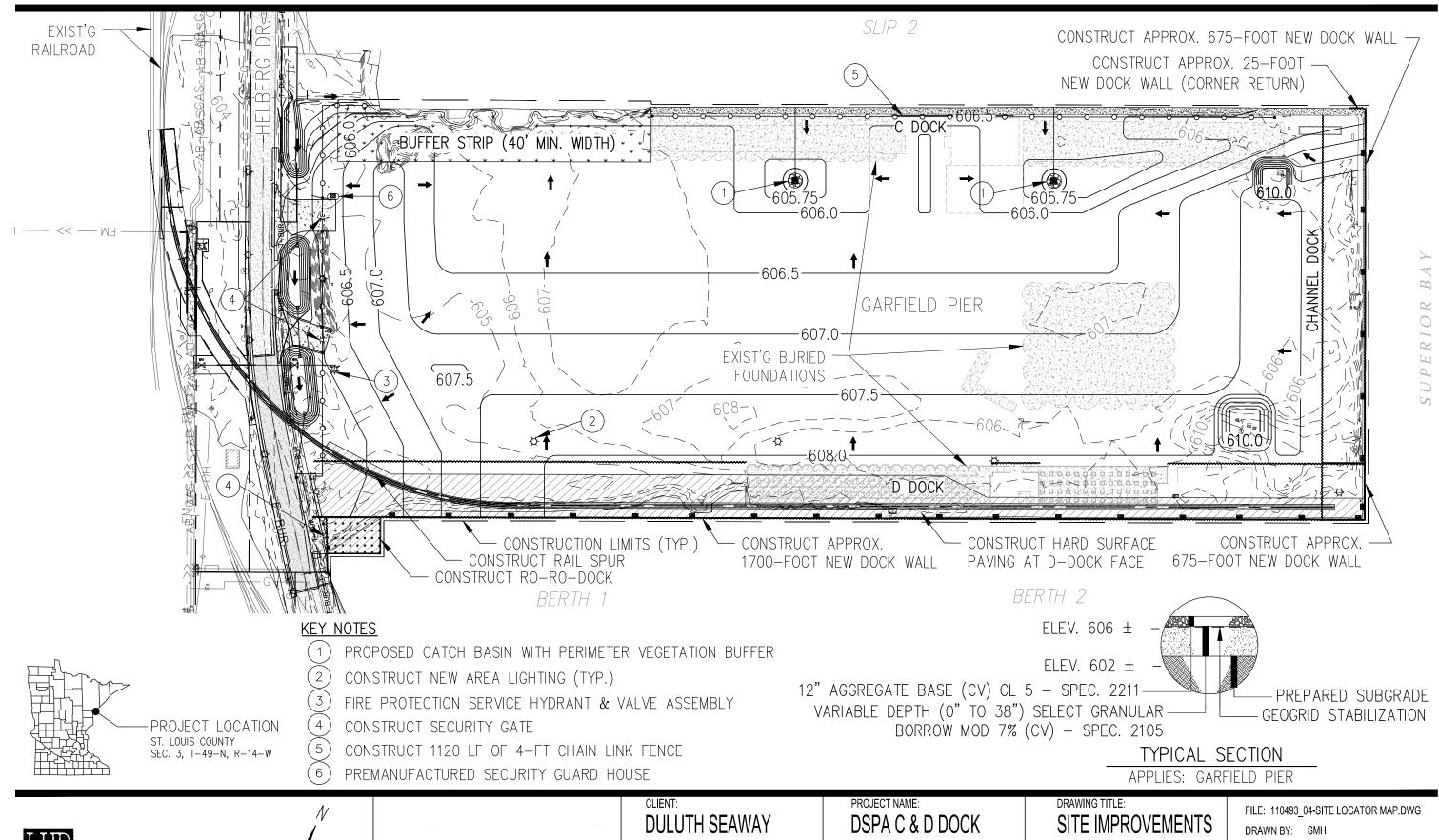

Figures











150'

DATE **REVISION** PORT AUTHORITY

REHABILITATION

CHECKED BY: BPS PROJ. NO: 110493 DRAWING NO:

FIGURE 9

& GRADING

COPYRIGHT 2014 BY LHB, INC. ALL RIGHTS RESERVED

Appendix A

Sediment Sampling Reports for Dock D (EPC 2012 and 2013)

EPC Engineering & Testing

Geotechnical • Environmental • Materials Engineering

539 Garfield Avenue Duluth, Minnesota 55802 (218) 727-1239 (218) 727-1248 fax

December 6, 2012 EPC # 12E0764

Mr. Joe Litman, P.E. LHB Corp. 21 West Superior St., Suite 500 Duluth, MN 55802

Re:

Sediment Sampling

Proposed Dredging Project

Duluth Seaway Port Authority, D Dock

Duluth, Minnesota

Dear Mr. Litman,

EPC Engineering & Testing (EPC) was contracted to perform sediment sampling in an area proposed for dredging for the above-referenced facility. It is our understanding that the results of the sampling will be used to assist in obtaining a dredging permit and in determining the end use of the dredged material. The following summarizes the methods and results of the sediment sampling.

Methods

On November 16 and 19, 2012, EPC performed four (4) sediment cores along the D Dock (in the vicinity of the Great Lakes Towing company tugboat mooring area) in Duluth, Minnesota, using a split spoon sampler (3-inch diameter) using EPC's CME 55 truck mounted and 750 ATV drill rigs, from the side of the dock wall (3 borings) and off a barge (1 boring). The sample locations were selected in the areas proposed for dredging and are shown in Attachment 1 to this letter report. Sediment Sample SB-12-01 (channel side) was completed to approximately 8 ft below the sediment line to adequately get below the proposed dredge depth (approximate elevation 573.1). Sediment samples SB-12-02, SB-12-03 and SB-12-04 (slip side) were completed to approximately 1.5 ft, 6.5 ft., and 9.0 ft., resepcetively, below the sediment line to adequately get below the proposed dredge depth (approximate elevation 573.1).

Sediment samples were retrieved and logged in accordance with Minnesota Dregde guidelines. Copies of the core logs are included in Attachment 2. Laboratory analytical samples were selected from the sediment samples based on changes in material types or depth, and submitted under proper chain of custody procedures to Pace Analytical in Green Bay, Wisconsin. Two (2) samples were taken from SB-12-01 (one from the POORLY GRADED SAND with SILT(SP-SM) layer, and one from the POORLY GRADED SAND(SP) layer. One (1) sample was taken from SB-12-02 from the CLAY and/or SILT(CL-CH/ML-MH) layer. Two (2) samples were taken from SB-12-03 (one from the SILTY SAND with GRAVEL(SM) layer, and one from the SILTY SAND(SM) layer. Two (2) samples were taken from SB-12-04 (one from the SILTY SAND(SM) layer, and one from the POORLY GRADED SAND with SILT(SP-SM) layer. The seven samples were taken and analyzed for: MN Landfill metals, Phosphorus, Nitrate-Nitrite, Ammonia Nitrite,

Total Kjedahl nitrogen, Total Organic Carbon, PCBs and PAHs/PNAs. In addition, two gradations (passing the #200 sieve) and five (5) hydrometer sieve analyses were performed on various samples from the four sediment cores to determine the amount of fines present and to assist in classifying soils according to the ASTM.

Results

As mentioned above, logs depicting the graphical results of each sediment sample were developed and are attached. The samples generally consisted of Silty Sand soils. A table providing more details on the sediment samples is included in Attachment 2.

Analytical laboratory results indicated a few "background level" RCRA metals were present in each of the samples tested. Samples from SB-12-02, -03, and -04 detected Arsenic and Mercury, but all at levels below the MPCA Tier 1 Residential Soil Reference Values (SRV). Sample S3(28.5-30) detected one low level PCB compound, which was well below the MPCA Tier 1 SRV. Sample S3(28.5-30) also indicated the presence of several low level PAHs, which were all below the MPCA Tier 1 SRV except for the Benzo(a)pyrene Equivalent (BaP). Analytical laboratory reports are included in Attachment 3.

Results of the Gradation and Hydrometer Sieve analyses were used to assist in classifying the following soil types in the four sediment cores: POORLY GRADED SAND with SILT (SP-SM), POORLY GRADED SAND(SP), CLAY and/or SILT (CL-CH/ML-MH), SILTY SAND with GRAVEL (SM), and SILTY SAND (SM). Gradation and Hydrometer gradation reports are included in Attachment 4.

Conclusions

Results of the sediment samples taken in the project area generally indicated the presence of Silty Sandy soils. Only sample S3(28.5-30) detected a low level PCB and PAHs. The BaP equivalent for this sample exceeds the MPCA Tier 1 SRV. None of the low level metals detected exceed the MPCA Tier 1 SRV. Hydrometer sieve analyses were performed to provide insight into the amounts of silt and clay in each of the main soil layers encountered. The following silt and clay percentages were determined for each of the respective identified soil types: POORLY GRADED SAND with SILT (SP-SM)[6.0-7.3%], POORLY GRADED SAND(SP)[2.5%], CLAY and/or SILT (CL-CH/ML-MH)[61.6%], SILTY SAND with GRAVEL (SM)[22.2%], and SILTY SAND (SM)[13.2-26.6%].

If you have any questions, please contact me at (218) 727-1239.

Sincerely,

EPC Engineering & Testing

Brian E. McVean, P.E.

Enclosures: Attachment 1 – Sediment Core Sample Location Map

Attachment 2 – Core Sample Logs and Summary Table

Attachment 3 – Analytical Laboratory Reports Attachment 4 – Physical Laboratory Reports

ATTACHMENT 1 SEDIMENT CORE SAMPLE LOCATION MAP

PERFORMANCE DRIVEN DESIGN.

Duluth Seaway Port Authority (DSPA)

1200 Port Terminal Drive Duluth, MN 55802

DATE


REVISION

IMPROVEMENTS PROJECT NAME: C AND D DOCK

SEDIMENT CORE **LOCATIONS**

FILE: ..\110493\600 Drawings\Base\110493 Borings Exhi

DRAWN BY: PAB CHECKED BY: BPS PROJ. NO: 110493 DRAWING NO:

ATTACHMENT 2 CORE SAMPLE LOGS AND SUMMARY TABLE

venue sota 55802							PAGE 1 OF
orporation	PROJEC	T NAMI	<u>DD</u>	ock			
						HOLE	E SIZE _8"
oin barge deck	Ar	TEKD		, <u></u>	_		
MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	POCKET PENETROMETEI (tsf)	DRY UNIT WT. (pcf)	20 40 60 80 PL MC LL 20 40 60 80 FINES CONTENT (%) 20 40 60 80
waterbearing, trace gravel, trace shells. Composite Laboratory Tested Samples 1, 2 & 3. Percent Passing #200 Sieve = 7.3%		SS 1 SS 2 SS 3 SS 4	75 79 100	0-1-1-1 (2) 0-17-16-5 (33) 3-3-6-3 (9) 22-4-4-6 (8)			20 40 60 80
3	POORLY GRADED SAND with SILT (SP-SM) brow waterbearing, trace gravel, trace shells. Composite Laboratory Tested Samples 1, 2 & 3. Percent Passing #200 Sieve = 7.3% POORLY GRADED SAND (SP-SM) brown, waterbearing trace gravel, trace shells.	PROJECT DER 12E0764 PROJECT 11/16/12 COMPLETED 11/16/12 GROUN RACTOR EPC Engineering & Testing GROUN OD CME 55 Truck Rig with HSA EM CHECKED BY CRL AT TOM barge deck MATERIAL DESCRIPTION WATER POORLY GRADED SAND with SILT (SP-SM) brown, waterbearing, trace gravel, trace shells. Composite Laboratory Tested Samples 1, 2 & 3. Percent Passing #200 Sieve = 7.3% POORLY GRADED SAND (SP-SM) brown, waterbearing, trace gravel, with silt of the percent Passing #200 Sieve = 2.5% POORLY GRADED SAND (SP-SM) brown, waterbearing, trace gravel, with silt of the percent Passing #200 Sieve = 2.5%	PROJECT NAMI PROJECT LOCA 11/16/12 COMPLETED 11/16/12 GROUND ELEV. RACTOR _EPC Engineering & Testing OD _CME 55 Truck Rig with HSA EM	PROJECT NAME DD PROJECT NAME DD PROJECT NAME DD PROJECT LOCATION 11/16/12	PROJECT NAME Dock PROJECT LOCATION Duluth, MM 11/16/12 COMPLETED 11/16/12 GROUND ELEVATION	PROJECT NAME _D_Dock PROJECT AME _D_Dock PROJECT LOCATION _Duluth, MN STATE 12E0764 PROJECT LOCATION _Duluth, MN	PROJECT NAME _D_Dock PROJECT NAME _D_Dock PROJECT LOCATION _Duluth, MN ### DIVIDING NAME D_Dock ### PROJECT LOCATION _Duluth, MN ### DIVIDING NAME D_Dock ### PROJECT LOCATION _Duluth, MN ### DIVIDING NAME D_Dock ### PROJECT LOCATION _Duluth, MN ### DIVIDING NAME D_Dock ### PROJECT LOCATION _Duluth, MN ### DIVIDING NAME D_Dock ### PROJECT LOCATION _Duluth, MN ### BROUND WATER LEVELS: ### AT INNE OF DRILLING _0.0 ft ### AT END OF DRILLING ### AT END OF DRILLING

					BORI	NG	NU	JMBER SB-12-02 PAGE 1 OF 1
CLIENT LHB Co	rporation	PROJEC	T NAME	D D	ock			
PROJECT NUMB	ER 12E0764				Duluth, MN	1		
	11/19/12						HOLE	E SIZE _8"
	RACTOR EPC Engineering & Testing							
1	CME 750 ATV with HSA & SPT Cal. to N79.							
	M CHECKED BY CRL							
NOTES Cored from	om edge of dock	_ AF	TER DRI	LLING	·			—
ELEVATION (ft) O DEPTH (ft) (ft) C GRAPHIC	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PENETROMETER (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A 20 40 60 80 PL MC LL 1 0 0 60 80 □ FINES CONTENT (%) □ 20 40 60 80
10 15 15 25 25 25 25 25 25 25 25 25 25 25 25 25	CLAY (CL-CH) and/or SILT (ML-MH) gray, waterb trace shells. Laboratory Tested Percent Passing #200 Sieve = 61.6% Bottom of hole at 31.0 feet.	earing,	AR SS 1	100	0-0-0-0/0"			RG M

					BORI	ING	NU	MBER SB-12-03 PAGE 1 OF 1
CLIENT LHB Corpo	oration	PROJEC	CT NAMI	<u>DD</u>	ock			
PROJECT NUMBER	12E0764				Duluth, MN	١		
DATE STARTED 1	1/19/12	GROUN	D ELEV	ATION			HOLE	SIZE _8"
	CTOR EPC Engineering & Testing							
1	CME 750 ATV with HSA & SPT Cal. to N79.							
	CHECKED BY CRL							
NOTES Cored from	n edge of dock	AF	TER DF	RILLING	3			γ
ELEVATION (ft) O DEPTH (ft) C GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PENETROMETER (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80
10 15 25 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SILTY SAND with GRAVEL (SM) gray, waterbear shells and wood. Composite Laboratory Tested Samples 1 & 2. Percent Passing #200 Sieve = 22.3% SILTY SAND (SM) gray to brown, waterbearing. Laboratory Tested Percent Passing #200 Sieve = 13.2% Bottom of hole at 30.0 feet.	ing, trace	AR	(75) (83) (93)	0-0-0-0 (0) 7-20-24-18 (44) 5-6-15-16 (21)			3624

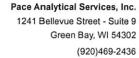
poration							
	PROJEC	CT NAM	NE DE	ock			
R _12E0764	PROJEC	CT LOC	CATION	Duluth, Mi	٧		
11/19/12	GROUN	D ELE	VATION			HOLE	SIZE 8"
ACTOR EPC Engineering & Testing							
D CME 750 ATV with HSA & SPT Cal. to N79.	_ ∑ ∧ī	TIME	OF DR	LLING <u>0.0</u>	ft		
M CHECKED BY CRL	. A1	END	OF DRII	LING			
om edge of dock	_ AF	TER D	RILLIN	G			
MATERIAL DESCRIPTION		SAMPLE TYPE	RECOVERY %	BLOW COUNTS (N VALUE)	POCKET PENETROMETER (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80
shells. Composite Laboratory Tested Samples 1, 2 & 3. Percent Passing #200 Sieve = 26.6%		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	S 75 S 71 S 100 S 100	0-0-0-0 (0) 0-0-0-1 (0) 2-3-4 (7) 12-15 6-12-18-24 (30)			
)	CME 750 ATV with HSA & SPT Cal. to N79. M CHECKED BY CRL m edge of dock MATERIAL DESCRIPTION WATER SILTY SAND (SM) dark brown to gray, waterbearing shells. Composite Laboratory Tested Samples 1, 2 & 3. Percent Passing #200 Sieve = 26.6% POORLY GRADED SAND w/SILT (SP-SM) brown waterbearing, trace wood. Composite Laboratory Tested Samples 4 & 5. Percent Passing #200 Sieve = 6.0%	ACTOR _EPC Engineering & Testing GROUN DD _CME 750 ATV with HSA & SPT Cal. to N79. M	GROUND WAT DO _CME 750 ATV with HSA & SPT Cal, to N79. M CHECKED BY _CRL	ACTOR EPC Engineering & Testing D CME 750 ATV with HSA & SPT Cal. to N79. M CHECKED BY CRL AT END OF DRIL AFTER DRILLIN WATER WATER SILTY SAND (SM) dark brown to gray, waterbearing, trace shells. Composite Laboratory Tested Samples 1, 2 & 3. Percent Passing #200 Sieve = 26.6% Composite Laboratory Tested Samples 4 & 5. Percent Passing, trace wood. Composite Laboratory Tested Samples 4 & 5. Percent Passing, trace wood. Composite Laboratory Tested Samples 4 & 5. Percent Passing #200 Sieve = 6.0% GROUND WATER SAND WATE	ACTOR EPC Engineering & Testing DD CME 750 ATV with HSA & SPT Cal. to N79. M	ACTOR EPC Engineering & Testing D CME 750 ATV with HSA & SPT Cal. to N79. M CHECKED BY CRL Material Description MATERIAL DESCRIP	ACTOR _EPC Engineering & Testing ### D _ CME 750 ATV with HSA & SPT Cal. to N79. ### M _ CHECKED BY _CRL on edge of dock ### MATERIAL DESCRIPTION MATERIAL DESCRIPTION AT END OF DRILLING

SEDIMENT SUMMARY TABLE

D Dock Duluth, Minnesota

November, 2012

		Top	Top Sample Layer		Low	Lower Sample Laver	
Sediment Core	Water Column (ft) ASTI	ASTM Class.	Thickness (ft.)	Analyses	Analyses ASTM Class.	Thickness (ft.) Analyses	Analyses
SB-12-01	23.0	SP-SM	9	Ш Н	SP	2	E G
) Î
SB-12-02	29.5	CL-CH/ML-MH	1.5		AN	AN	NA
SB-12-03	23.5	SM		T L	NS		I
							Ĺ
SB-12-04	21.0	SM	5.5	T. T.	SP-SM	3.5	П
						9:0) Î


ASTM Classifications =>

SP-SM = POORLEY GRADED SAND with SILT, SP = POORLY GRADED SAND, CL-CH/ML-MH = CLAY and/or SILT, SM = SILTY SAND

Analyses Codes =>

E = MN LF metals, Phosphorus, Nitrate-Nitrite, Ammonia Nitrogen, TKN, PCBs, PAHs, TOC G = mechanical gradation % passing #200 sieve H = hydrometer gradation

ATTACHMENT 3 ANALYTICAL LABORATORY REPORTS

December 05, 2012

Brian McVean ENGINEERING PARTNERS CO. 539 Garfield Avenue Duluth, MN 55802

RE: Project: D DOCK

Pace Project No.: 4070988

Dear Brian McVean:

Enclosed are the analytical results for sample(s) received by the laboratory on November 21, 2012. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

A-VM

Steven Mleczko

steve.mleczko@pacelabs.com Project Manager

Enclosures

Pace Analytical Services, Inc. 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project:

D DOCK

Pace Project No.:

4070988

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 11888 North Carolina Certification #: 503 North Dakota Certification #: R-150 South Carolina Certification #: 83006001 US Dept of Agriculture #: S-76505 Wisconsin Certification #: 405132750

SAMPLE SUMMARY

Project: D DOCK
Pace Project No.: 4070988

Lab ID	Sample ID	Matrix	Date Collected	Date Received
4070988001	S1 (23-29)	Solid	11/20/12 00:00	11/21/12 15:30
4070988002	S1 (29-31)	Solid	11/20/12 00:00	11/21/12 15:30
4070988003	S2 (29.5-31)	Solid	11/20/12 00:00	11/21/12 15:30
4070988004	S3 (23.5-28.5)	Solid	11/20/12 00:00	11/21/12 15:30
4070988005	S3 (28.5-30)	Solid	11/20/12 00:00	11/21/12 15:30
4070988006	S4 (21-26.5)	Solid	11/20/12 00:00	11/21/12 15:30
4070988007	S4 (26.5-30)	Solid	11/20/12 00:00	11/21/12 15:30

SAMPLE ANALYTE COUNT

Project:

D DOCK

Pace Project No.:

4070988

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
4070988001	S1 (23-29)	EPA 8082	BLM	10	PASI-G
		EPA 6010	DLB	7	PASI-G
		EPA 7471	CMS	1	PASI-G
		EPA 8270 by SIM	ARO	18	PASI-G
		ASTM D2974-87	SKW	1	PASI-G
		EPA 300.0	JCJ	3	PASI-G
		EPA 350.1	HMB	1	PASI-G
		EPA 351.2	HMB	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
		EPA 9060 Modified	TJJ	4	PASI-G
4070988002	S1 (29-31)	EPA 8082	BLM	10	PASI-G
		EPA 6010	DLB	7	PASI-G
		EPA 7471	CMS	1	PASI-G
		EPA 8270 by SIM	ARO	18	PASI-G
		ASTM D2974-87	SKW	1	PASI-G
		EPA 300.0	JCJ	3	PASI-G
		EPA 350.1	HMB	1	PASI-G
		EPA 351.2	HMB	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
		EPA 9060 Modified	TJJ	4	PASI-G
4070988003	S2 (29.5-31)	EPA 8082	BLM	10	PASI-G
		EPA 6010	DLB	7	PASI-G
		EPA 7471	CMS	1	PASI-G
		EPA 8270 by SIM	ARO	18	PASI-G
		ASTM D2974-87	SKW	1	PASI-G
		EPA 300.0	JCJ	3	PASI-G
		EPA 350.1	HMB	1	PASI-G
		EPA 351.2	HMB	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
		EPA 9060 Modified	TJJ	4	PASI-G
1070988004	S3 (23.5-28.5)	EPA 8082	BLM	10	PASI-G
		EPA 6010	DLB	7	PASI-G
		EPA 7471	CMS	1	PASI-G
		EPA 8270 by SIM	ARO	18	PASI-G
		ASTM D2974-87	SKW	1	PASI-G
		EPA 300.0	JCJ	3	PASI-G
		EPA 350.1	НМВ	1	PASI-G

REPORT OF LABORATORY ANALYSIS

Page 4 of 40

SAMPLE ANALYTE COUNT

Project:

D DOCK

Pace Project No.:

4070988

.ab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 351.2	HMB	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
		EPA 9060 Modified	TJJ	4	PASI-G
070988005	S3 (28.5-30)	EPA 8082	BLM	10	PASI-G
		EPA 6010	DLB	7	PASI-G
		EPA 7471	CMS	1	PASI-G
		EPA 8270 by SIM	ARO	18	PASI-G
		ASTM D2974-87	SKW	1	PASI-G
		EPA 300.0	JCJ	3	PASI-G
		EPA 350.1	НМВ	1	PASI-G
		EPA 351.2	НМВ	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
		EPA 9060 Modified	TJJ	4	PASI-G
070988006	S4 (21-26.5)	EPA 8082	BLM	10	PASI-G
		EPA 6010	DLB	7	PASI-G
		EPA 7471	CMS	1	PASI-G
		EPA 8270 by SIM	ARO	18	PASI-G
		ASTM D2974-87	SKW	1	PASI-G
		EPA 300.0	JCJ	3	PASI-G
		EPA 350.1	НМВ	1	PASI-G
		EPA 351.2	НМВ	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
		EPA 9060 Modified	TJJ	4	PASI-G
070988007	S4 (26.5-30)	EPA 8082	BLM	10	PASI-G
		EPA 6010	DLB	7	PASI-G
		EPA 7471	CMS	1	PASI-G
		EPA 8270 by SIM	ARO	18	PASI-G
		ASTM D2974-87	SKW	1	PASI-G
		EPA 300.0	JCJ	3	PASI-G
		EPA 350.1	НМВ	1	PASI-G
		EPA 351.2	НМВ	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
		EPA 9060 Modified	TJJ	4	PASI-G

Project: D DOCK Pace Project No.: 4070988

Sample: S1 (23-29) Lab ID: 4070988001 Collected: 11/20/12 00:00 Received: 11/21/12 15:30 Matrix: Solid

			-			01011	_
Parameters	Results Ui	its Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8082 GCS PCB	Analytical Method: E	PA 8082 Preparation Met	hod: EF	PA 3541			
PCB-1016 (Aroclor 1016)	ND ug/kg	127	1	11/26/12 12:00	11/27/12 13:11	12674-11-2	
PCB-1221 (Aroclor 1221)	ND ug/kg	127	1	11/26/12 12:00	11/27/12 13:11	11104-28-2	
PCB-1232 (Aroclor 1232)	ND ug/kg	127	1	11/26/12 12:00	11/27/12 13:11	11141-16-5	
PCB-1242 (Aroclor 1242)	ND ug/kg	127	1	11/26/12 12:00	11/27/12 13:11	53469-21-9	
PCB-1248 (Aroclor 1248)	ND ug/kg	127	1	11/26/12 12:00	11/27/12 13:11	12672-29-6	
PCB-1254 (Aroclor 1254)	ND ug/kg	127	1	11/26/12 12:00	11/27/12 13:11	11097-69-1	
PCB-1260 (Aroclor 1260)	ND ug/kg	127	1	11/26/12 12:00	11/27/12 13:11	11096-82-5	
PCB, Total	ND ug/kg	127	1	11/26/12 12:00	11/27/12 13:11	1336-36-3	
Surrogates	-3-3						
Tetrachloro-m-xylene (S)	89 %.	43-130	1	11/26/12 12:00	11/27/12 13:11	877-09-8	
Decachlorobiphenyl (S)	85 %.	48-130	1	11/26/12 12:00	11/27/12 13:11	2051-24-3	
010 MET ICP	Analytical Method: El	A 6010 Preparation Met	hod: EF	PA 3050			
Arsenic	ND mg/kg	2.5	1	11/27/12 16:30	11/28/12 10:39	7440-38-2	
Barium	11.7 mg/kg	0.63	1	11/27/12 16:30	11/28/12 10:39	7440-39-3	
Cadmium	ND mg/kg	0.63	1	11/27/12 16:30	11/28/12 10:39	7440-43-9	
Chromium	7.6 mg/kg	0.63	1	11/27/12 16:30	11/28/12 10:39	7440-47-3	
.ead	3.1 mg/kg	1.3	1	11/27/12 16:30	11/28/12 10:39	7439-92-1	
Selenium	ND mg/kg	2.5	1	11/27/12 16:30	11/28/12 10:39	7782-49-2	
Bilver	ND mg/kg	1.3	1	11/27/12 16:30	11/28/12 10:39	7440-22-4	
471 Mercury	Analytical Method: Ef	A 7471 Preparation Met	hod: EP	A 7471			
Mercury	0.014 mg/kg	0.0073	1	12/03/12 10:03	12/03/12 13:54	7439-97-6	
270 MSSV PAH by SIM	Analytical Method: EF	A 8270 by SIM Preparat	ion Met	hod: EPA 3546			
Acenaphthene	ND ug/kg	127	1	11/27/12 05:25	11/27/12 14:42	83-32-9	
cenaphthylene	ND ug/kg	127	1	11/27/12 05:25	11/27/12 14:42	208-96-8	
nthracene	ND ug/kg	127	1	11/27/12 05:25	11/27/12 14:42	120-12-7	
Benzo(a)anthracene	ND ug/kg	127	1	11/27/12 05:25	11/27/12 14:42	56-55-3	
Benzo(a)pyrene	ND ug/kg	127	1	11/27/12 05:25	11/27/12 14:42	50-32-8	
Benzo(b)fluoranthene	ND ug/kg	127	1	11/27/12 05:25	11/27/12 14:42	205-99-2	
enzo(g,h,i)perylene	ND ug/kg	127	1	11/27/12 05:25	11/27/12 14:42	191-24-2	
senzo(k)fluoranthene	ND ug/kg	127	1	11/27/12 05:25	11/27/12 14:42	207-08-9	
Chrysene	ND ug/kg	127	1	11/27/12 05:25	11/27/12 14:42	218-01-9	
Dibenz(a,h)anthracene	ND ug/kg	127	1	11/27/12 05:25	11/27/12 14:42	53-70-3	
luoranthene	ND ug/kg	127	1	11/27/12 05:25	11/27/12 14:42	206-44-0	
luorene	ND ug/kg	127	1	11/27/12 05:25	11/27/12 14:42	86-73-7	
ndeno(1,2,3-cd)pyrene	ND ug/kg	127	1	11/27/12 05:25	11/27/12 14:42	193-39-5	
laphthalene	ND ug/kg	127	1	11/27/12 05:25	11/27/12 14:42	91-20-3	
henanthrene	ND ug/kg	127	1		11/27/12 14:42		
yrene	ND ug/kg	127	1		11/27/12 14:42		
urrogates	3.13						
-Fluorobiphenyl (S)	73 %.	43-130	1	11/27/12 05:25	11/27/12 14:42	321-60-8	
	82 %.	32-130	1	11/27/12 05:25	11/07/10 11 10	1710 71 0	

Date: 12/05/2012 04:21 PM

REPORT OF LABORATORY ANALYSIS

Project:

D DOCK

Pace Project No.:

4070988

Sample: S1 (23-29)

Lab ID: 4070988001

Collected: 11/20/12 00:00 Received: 11/21/12 15:30 Matrix: Solid

Results reported on a "dry-weight	" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Met	hod: ASTM D2	2974-87					
Percent Moisture	21.0 %		0.10	1		12/03/12 14:00		
300.0 IC Anions	Analytical Met	hod: EPA 300.	0 Preparation Met	hod: El	PA 300.0			
Nitrate as N Nitrite as N Nitrogen, NO2 plus NO3	ND m ND m ND m	g/kg	5.0 2.5 5.0	1 1 1	11/27/12 21:31 11/27/12 21:31 11/27/12 21:31	11/29/12 01:22		
350.1 Ammonia	Analytical Met	hod: EPA 350.	1 Preparation Met	hod: Ef	PA 350.1			
Nitrogen, Ammonia	18.2 m	g/kg	17.3	1	11/28/12 19:33	11/28/12 21:57	7664-41-7	R1
351.2 Total Kjeldahl Nitrogen	Analytical Met	hod: EPA 351.	2 Preparation Met	hod: Ef	PA 351.2			
Nitrogen, Kjeldahl, Total	117 m	g/kg	55.0	1	12/04/12 16:31	12/05/12 12:24	7727-37-9	
365.4 Total Phosphorus	Analytical Met	hod: EPA 365.	4 Preparation Met	hod: Ef	PA 365.4			
Phosphorus	269 m	g/kg	31.6	1	11/29/12 08:46	11/29/12 14:07	7723-14-0	
Total Organic Carbon	Analytical Met	hod: EPA 9060) Modified					
Surrogates RPD% Total Organic Carbon Total Organic Carbon Mean Total Organic Carbon	9.0 % 2520 m 2760 m 2640 m	g/kg g/kg	806 800 803	1 1 1		11/29/12 13:58 11/29/12 13:54 11/29/12 13:58 11/29/12 13:58		

D DOCK Project: Pace Project No.: 4070988

Sample: S1 (29-31) Lab ID: 4070988002 Collected: 11/20/12 00:00 Received: 11/21/12 15:30 Matrix: Solid

Results reported on a "dry-wei	ight" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3082 GCS PCB	Analytical Method	d: EPA 8082	2 Preparation Met	hod: EF	PA 3541			
PCB-1016 (Aroclor 1016)	ND ug/kg	g	128	1	11/26/12 12:00	11/27/12 13:29	12674-11-2	
PCB-1221 (Aroclor 1221)	ND ug/kg	-	128	1	11/26/12 12:00	11/27/12 13:29	11104-28-2	
PCB-1232 (Aroclor 1232)	ND ug/kg	58	128	1	11/26/12 12:00	11/27/12 13:29	11141-16-5	
PCB-1242 (Aroclor 1242)	ND ug/kg		128	1	11/26/12 12:00	11/27/12 13:29	53469-21-9	
PCB-1248 (Aroclor 1248)	ND ug/kg		128	1	11/26/12 12:00	11/27/12 13:29	12672-29-6	
PCB-1254 (Aroclor 1254)	ND ug/kg	50	128	1		11/27/12 13:29		
PCB-1260 (Aroclor 1260)	ND ug/kg		128	1		11/27/12 13:29		
PCB, Total	ND ug/kg	- 833	128	1		11/27/12 13:29		
Surrogates	29	,	.20			11/21/12 10:20	1000 00 0	
etrachloro-m-xylene (S)	87 %.		43-130	1	11/26/12 12:00	11/27/12 13:29	877-09-8	
Decachlorobiphenyl (S)	86 %.		48-130	1	11/26/12 12:00	11/27/12 13:29	2051-24-3	
010 MET ICP	Analytical Method	d: EPA 6010	Preparation Meth	nod: EP	A 3050			
Arsenic	ND mg/k	g	2.3	1	11/27/12 16:30	11/28/12 10:45	7440-38-2	
Barium	16.3 mg/k	g	0.58	1	11/27/12 16:30	11/28/12 10:45	7440-39-3	
Cadmium	ND mg/k		0.58	1	11/27/12 16:30	11/28/12 10:45	7440-43-9	
Chromium	4.9 mg/k	g	0.58	1	11/27/12 16:30	11/28/12 10:45	7440-47-3	
ead	3.3 mg/k		1.2	1	11/27/12 16:30	11/28/12 10:45	7439-92-1	
Selenium	ND mg/k	g	2.3	1	11/27/12 16:30	11/28/12 10:45	7782-49-2	
ilver	ND mg/k		1.2	1	11/27/12 16:30	11/28/12 10:45	7440-22-4	
471 Mercury	Analytical Method	I: EPA 7471	Preparation Meth	nod: EP	A 7471			
Mercury	ND mg/kg	g	0.0082	1	12/03/12 10:03	12/03/12 13:56	7439-97-6	
270 MSSV PAH by SIM	Analytical Method	I: EPA 8270	by SIM Preparati	on Met	nod: EPA 3546			
cenaphthene	ND ug/kg		128	1	11/28/12 06:18	11/28/12 17:54	83-32-9	
cenaphthylene	ND ug/kg		128	1	11/28/12 06:18	11/28/12 17:54	208-96-8	
nthracene	ND ug/kg		128	1	11/28/12 06:18	11/28/12 17:54	120-12-7	
enzo(a)anthracene	ND ug/kg		128	1	11/28/12 06:18	11/28/12 17:54	56-55-3	
enzo(a)pyrene	ND ug/kg		128	1	11/28/12 06:18	11/28/12 17:54	50-32-8	
enzo(b)fluoranthene	ND ug/kg		128	1	11/28/12 06:18	11/28/12 17:54	205-99-2	
enzo(g,h,i)perylene	ND ug/kg		128	1	11/28/12 06:18	11/28/12 17:54	191-24-2	
enzo(k)fluoranthene	ND ug/kg		128	1	11/28/12 06:18	11/28/12 17:54	207-08-9	
hrysene	ND ug/kg		128	1	11/28/12 06:18	11/28/12 17:54	218-01-9	
ibenz(a,h)anthracene	ND ug/kg		128	1	11/28/12 06:18	11/28/12 17:54	53-70-3	
uoranthene	ND ug/kg		128	1	11/28/12 06:18	11/28/12 17:54	206-44-0	
uorene	ND ug/kg		128	1		11/28/12 17:54		
deno(1,2,3-cd)pyrene	ND ug/kg		128	1	11/28/12 06:18	11/28/12 17:54	193-39-5	
aphthalene	ND ug/kg		128	1		11/28/12 17:54		
henanthrene	ND ug/kg		128	1		11/28/12 17:54		
/rene	ND ug/kg		128	1		11/28/12 17:54		
urrogates	i i b ag/iig		120				00 0	
Fluorobiphenyl (S)	52 %.		43-130	1	11/28/12 06:18	11/28/12 17:54	321-60-8	
erphenyl-d14 (S)	61 %.		32-130	1		11/28/12 17:54		
orphonyi a ra (O)	01 70.		32-130	,	11/20/12 00.10	11/20/12 17.04	1710-01-0	

Date: 12/05/2012 04:21 PM

REPORT OF LABORATORY ANALYSIS

Project: D DOCK Pace Project No.: 4070988

Sample: S1 (29-31) Lab ID: 4070988002 Collected: 11/20/12 00:00 Received: 11/21/12 15:30 Matrix: Solid

Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Percent Moisture	Analytical Met	hod: ASTM D2	2974-87					
Percent Moisture	21.9 %		0.10	1		12/03/12 14:00		
300.0 IC Anions	Analytical Met	hod: EPA 300.	0 Preparation Met	hod: E	PA 300.0			
Nitrate as N	ND m	g/kg	5.1	1	11/27/12 21:31	11/29/12 02:13	14797-55-8	
Nitrite as N	ND m	g/kg	2.6	1	11/27/12 21:31	11/29/12 02:13	14797-65-0	
Nitrogen, NO2 plus NO3	ND m	g/kg	5.1	1	11/27/12 21:31	11/29/12 02:13		
350.1 Ammonia	Analytical Met	hod: EPA 350.	1 Preparation Met	hod: E	PA 350.1			
Nitrogen, Ammonia	ND m	g/kg	19.2	1	11/28/12 19:33	11/28/12 22:00	7664-41-7	
351.2 Total Kjeldahl Nitrogen	Analytical Met	hod: EPA 351.	2 Preparation Met	hod: El	PA 351.2			
Nitrogen, Kjeldahl, Total	151 m	g/kg	116	1	12/04/12 16:31	12/05/12 12:26	7727-37-9	
365.4 Total Phosphorus	Analytical Met	hod: EPA 365.	4 Preparation Met	hod: El	PA 365.4			
Phosphorus	140 m	g/kg	22.3	1	11/29/12 08:46	11/29/12 14:07	7723-14-0	
Total Organic Carbon	Analytical Met	hod: EPA 9060) Modified					
Surrogates								
RPD%	8.6 %			1		11/29/12 14:08		
Total Organic Carbon	2770 m		1010	1		11/29/12 14:01	7440-44-0	
Total Organic Carbon	3020 m		962	1		11/29/12 14:08	7440-44-0	
Mean Total Organic Carbon	2900 m	g/kg	986	1		11/29/12 14:08	7440-44-0	

Project:

D DOCK

Pace Project No.: 4070988

Sample: S2 (29.5-31) Lab ID: 4070988003 Collected: 11/20/12 00:00 Received: 11/21/12 15:30 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8082 GCS PCB	Analytical Meth	od: EPA 808	2 Preparation Meth	nod: EF	PA 3541			
PCB-1016 (Aroclor 1016)	ND ug/	kg	199	1	11/26/12 12:00	11/27/12 13:47	12674-11-2	
PCB-1221 (Aroclor 1221)	ND ug/	kg	199	1	11/26/12 12:00	11/27/12 13:47	11104-28-2	
PCB-1232 (Aroclor 1232)	ND ug/	kg	199	1	11/26/12 12:00	11/27/12 13:47	11141-16-5	
PCB-1242 (Aroclor 1242)	ND ug/	kg	199	1	11/26/12 12:00	11/27/12 13:47	53469-21-9	
PCB-1248 (Aroclor 1248)	ND ug/		199	1	11/26/12 12:00	11/27/12 13:47	12672-29-6	
PCB-1254 (Aroclor 1254)	. ND ug/l	kg	199	1	11/26/12 12:00	11/27/12 13:47	11097-69-1	
PCB-1260 (Aroclor 1260)	ND ug/l	kg	199	1	11/26/12 12:00	11/27/12 13:47	11096-82-5	
PCB, Total	ND ug/l		199	1	11/26/12 12:00	11/27/12 13:47	1336-36-3	
Surrogates	· ·	Ü						
Tetrachloro-m-xylene (S)	84 %.		43-130	1	11/26/12 12:00	11/27/12 13:47	877-09-8	
Decachlorobiphenyl (S)	80 %.		48-130	1	11/26/12 12:00	11/27/12 13:47	2051-24-3	
6010 MET ICP	Analytical Metho	od: EPA 601	0 Preparation Meth	nod: EP	A 3050			
Arsenic	5.3 mg/	'kg	3.6	1	11/27/12 16:30	11/28/12 10:48	7440-38-2	
Barium	95.6 mg/	kg	0.90	1	11/27/12 16:30	11/28/12 10:48	7440-39-3	
Cadmium	ND mg/	kg	0.90	1	11/27/12 16:30	11/28/12 10:48	7440-43-9	
Chromium	24.8 mg/	kg	0.90	1	11/27/12 16:30	11/28/12 10:48	7440-47-3	
Lead	14.1 mg/	kg	1.8	1	11/27/12 16:30	11/28/12 10:48	7439-92-1	
Selenium	ND mg/	kg	3.6	1	11/27/12 16:30	11/28/12 10:48	7782-49-2	
Silver	ND mg/	kg	1.8	1	11/27/12 16:30	11/28/12 10:48	7440-22-4	
7471 Mercury	Analytical Metho	od: EPA 747	1 Preparation Meth	od: EP	A 7471			
Mercury	0.059 mg/	kg	0.011	1	12/03/12 10:03	12/03/12 13:58	7439-97-6	
3270 MSSV PAH by SIM	Analytical Metho	od: EPA 827	0 by SIM Preparation	on Met	hod: EPA 3546			
Acenaphthene	ND ug/k	g	199	1	11/28/12 06:18	11/28/12 18:12	83-32-9	
Acenaphthylene	ND ug/k	g	199	1	11/28/12 06:18	11/28/12 18:12	208-96-8	
Anthracene	ND ug/k	g	199	1	11/28/12 06:18	11/28/12 18:12	120-12-7	
Benzo(a)anthracene	ND ug/k	g	199	1	11/28/12 06:18	11/28/12 18:12	56-55-3	
Benzo(a)pyrene	ND ug/k	g	199	1	11/28/12 06:18	11/28/12 18:12	50-32-8	
Benzo(b)fluoranthene	ND ug/k	g	199	1	11/28/12 06:18	11/28/12 18:12	205-99-2	
Benzo(g,h,i)perylene	ND ug/k	g	199	1	11/28/12 06:18	11/28/12 18:12	191-24-2	
Benzo(k)fluoranthene	ND ug/k	g	199	1	11/28/12 06:18	11/28/12 18:12	207-08-9	
Chrysene	ND ug/k	g	199	1	11/28/12 06:18	11/28/12 18:12	218-01-9	
Dibenz(a,h)anthracene	ND ug/k	g	199	1	11/28/12 06:18	11/28/12 18:12	53-70-3	
luoranthene	ND ug/k		199	1	11/28/12 06:18	11/28/12 18:12	206-44-0	
luorene	ND ug/k	•	199	1	11/28/12 06:18	11/28/12 18:12	86-73-7	
ndeno(1,2,3-cd)pyrene	ND ug/k	-	199	1	11/28/12 06:18	11/28/12 18:12	193-39-5	
Naphthalene	ND ug/k	•	199	1	11/28/12 06:18	11/28/12 18:12	91-20-3	
2014 B 2014 B 2015 C 2016 C 20	ND ug/k	-	199	1		11/28/12 18:12		
henanthrene			199	1		11/28/12 18:12		
	ND ua/k	g	199					
yrene	ND ug/k	g	199		11/20/12 00:10	11/20/12 10:12	120 00 0	
Phenanthrene Pyrene Surrogates P-Fluorobiphenyl (S)	ND ug/k 52 %.	g	43-130	1		11/28/12 18:12		

Date: 12/05/2012 04:21 PM

Project:

D DOCK

Pace Project No.:

4070988

Sample: S2 (29.5-31)

Lab ID: 4070988003

Collected: 11/20/12 00:00 Received: 11/21/12 15:30 Matrix: Solid

Results reported on a	"dry-weight" basis
-----------------------	--------------------

Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Me	thod: ASTM D	2974-87					
Percent Moisture	49.8 %)	0.10	1		12/03/12 14:00		
300.0 IC Anions	Analytical Met	thod: EPA 300	.0 Preparation Met	thod: E	PA 300.0			
Nitrate as N	ND m	g/kg	8.1	1	11/27/12 21:31	11/29/12 02:23	14797-55-8	
Nitrite as N	ND m	g/kg	4.1	1	11/27/12 21:31	11/29/12 02:23	14797-65-0	
Nitrogen, NO2 plus NO3	ND m	g/kg	8.1	1	11/27/12 21:31	11/29/12 02:23		
350.1 Ammonia	Analytical Met	hod: EPA 350.	1 Preparation Met	hod: E	PA 350.1			
Nitrogen, Ammonia	352 m	g/kg	20.6	1	11/28/12 19:33	11/28/12 22:03	7664-41-7	
351.2 Total Kjeldahl Nitrogen	Analytical Met	hod: EPA 351.	2 Preparation Met	hod: E	PA 351.2			
Nitrogen, Kjeldahl, Total	1470 m	g/kg	114	1	12/04/12 16:31	12/05/12 12:27	7727-37-9	
365.4 Total Phosphorus	Analytical Met	hod: EPA 365.	4 Preparation Met	hod: E	PA 365.4			
Phosphorus	697 m	g/kg	66.4	1	11/29/12 08:46	11/29/12 14:08	7723-14-0	
Total Organic Carbon	Analytical Met	hod: EPA 9060) Modified					
Surrogates								
RPD%	15.4 %		0400	1		11/29/12 14:15	7440 44.0	
Total Organic Carbon	11900 m	0 0	2130	1		11/29/12 14:11	7440-44-0	
Total Organic Carbon	13900 m	0 0	2270	1		11/29/12 14:15	7440-44-0	
Mean Total Organic Carbon	12900 m	g/kg	2200	1		11/29/12 14:15	7440-44-0	

Project:

D DOCK

Pace Project No.:

4070988

Sample: S3 (23.5-28.5)

Lab ID: 4070988004

Collected: 11/20/12 00:00

Received: 11/21/12 15:30

30 Matrix: Solid

olia

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical Meth	od: EPA 8082	Preparation Met	hod: EF	PA 3541			
PCB-1016 (Aroclor 1016)	ND ug/	kg	173	1	11/26/12 12:00	11/27/12 14:05	12674-11-2	
PCB-1221 (Aroclor 1221)	ND ug/	kg	173	1	11/26/12 12:00	11/27/12 14:05	11104-28-2	
PCB-1232 (Aroclor 1232)	ND ug/	kg	173	1	11/26/12 12:00	11/27/12 14:05	11141-16-5	
PCB-1242 (Aroclor 1242)	ND ug/	kg	173	1	11/26/12 12:00	11/27/12 14:05	53469-21-9	
PCB-1248 (Aroclor 1248)	ND ug/	kg	173	1		11/27/12 14:05		
PCB-1254 (Aroclor 1254)	ND ug/	kg	173	1	11/26/12 12:00	11/27/12 14:05	11097-69-1	
PCB-1260 (Aroclor 1260)	ND ug/		173	1	11/26/12 12:00	11/27/12 14:05	11096-82-5	
PCB, Total	ND ug/	kg	173	1	11/26/12 12:00	11/27/12 14:05	1336-36-3	
Surrogates								
Tetrachloro-m-xylene (S)	85 %.		43-130	1	11/26/12 12:00	11/27/12 14:05	877-09-8	
Decachlorobiphenyl (S)	77 %.		48-130	1	11/26/12 12:00	11/27/12 14:05	2051-24-3	
6010 MET ICP	Analytical Meth	od: EPA 6010	Preparation Meth	nod: EF	PA 3050			
Arsenic	4.6 mg.	/kg	3.2	1	11/27/12 16:30	11/28/12 10:56	7440-38-2	
Barium	77.6 mg.	/kg	0.79	1	11/27/12 16:30	11/28/12 10:56	7440-39-3	
Cadmium	ND mg	/kg	0.79	1	11/27/12 16:30	11/28/12 10:56	7440-43-9	
Chromium	22.0 mg	/kg	0.79	1	11/27/12 16:30	11/28/12 10:56	7440-47-3	
Lead	13.2 mg/	/kg	1.6	1	11/27/12 16:30	11/28/12 10:56	7439-92-1	
Selenium	ND mg/	/kg	3.2	1	11/27/12 16:30	11/28/12 10:56	7782-49-2	
Silver	ND mg/	'kg	1.6	1	11/27/12 16:30	11/28/12 10:56	7440-22-4	
7471 Mercury	Analytical Metho	od: EPA 7471	Preparation Meth	od: EP	PA 7471			
Mercury	0.061 mg/	kg	0.0097	1	12/03/12 10:03	12/03/12 14:00	7439-97-6	
8270 MSSV PAH by SIM	Analytical Metho	od: EPA 8270	by SIM Preparation	on Met	hod: EPA 3546			
Acenaphthene	ND ug/l	кg	173	1	11/28/12 06:18	11/28/12 18:29	83-32-9	
Acenaphthylene	ND ug/l	kg .	173	1	11/28/12 06:18	11/28/12 18:29	208-96-8	
Anthracene	ND ug/l	(g	173	1	11/28/12 06:18	11/28/12 18:29	120-12-7	
Benzo(a)anthracene	ND ug/l	(g	173	1	11/28/12 06:18	11/28/12 18:29	56-55-3	
Benzo(a)pyrene	ND ug/l	-	173	1	11/28/12 06:18	11/28/12 18:29	50-32-8	
Benzo(b)fluoranthene	ND ug/k	g	173	1	11/28/12 06:18	11/28/12 18:29	205-99-2	
Benzo(g,h,i)perylene	ND ug/k	g	173	1	11/28/12 06:18	11/28/12 18:29	191-24-2	
Benzo(k)fluoranthene	ND ug/k	g	173	1	11/28/12 06:18	11/28/12 18:29	207-08-9	
Chrysene	ND ug/k	g	173	1	11/28/12 06:18	11/28/12 18:29	218-01-9	
Dibenz(a,h)anthracene	ND ug/k	g	173	1	11/28/12 06:18	11/28/12 18:29	53-70-3	
Fluoranthene	ND ug/k	g	173	1		11/28/12 18:29		
Fluorene	ND ug/k	g	173	1	11/28/12 06:18	11/28/12 18:29	86-73-7	
ndeno(1,2,3-cd)pyrene	ND ug/k	g	173	1		11/28/12 18:29		
Naphthalene	ND ug/k	g	173	1	11/28/12 06:18	11/28/12 18:29	91-20-3	
Phenanthrene	ND ug/k	g	173	1	11/28/12 06:18	11/28/12 18:29	85-01-8	
Pyrene	ND ug/k	g	173	1	11/28/12 06:18	11/28/12 18:29	129-00-0	
Surrogates								
2-Fluorobiphenyl (S)	61 %.		43-130	1	11/28/12 06:18		321-60-8	
Terphenyl-d14 (S)	69 %.		32-130	1	11/28/12 06:18	11/28/12 18:29	1718-51-0	

Project:

D DOCK

Pace Project No.: 4070988

Sample: S3 (23.5-28.5)

Lab ID: 4070988004

Collected: 11/20/12 00:00 Received: 11/21/12 15:30 Matrix: Solid

Results reported on a "dry-weig	ht" basis
Parameters	Re

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Metho	od: ASTM D29	974-87					
Percent Moisture	42.2 %		0.10	1		12/03/12 14:00		
300.0 IC Anions	Analytical Metho	od: EPA 300.0	Preparation Me	thod: E	PA 300.0			
Nitrate as N Nitrite as N Nitrogen, NO2 plus NO3	ND mg/ ND mg/ ND mg/	kg	6.9 3.5 6.9	1 1 1	11/27/12 21:31 11/27/12 21:31 11/27/12 21:31	11/29/12 02:34 11/29/12 02:34 11/29/12 02:34		
350.1 Ammonia	Analytical Metho	od: EPA 350.1	Preparation Me	thod: E	PA 350.1			
Nitrogen, Ammonia	237 mg/	kg	16.2	1	11/28/12 19:33	11/28/12 22:04	7664-41-7	
351.2 Total Kjeldahl Nitrogen	Analytical Metho	od: EPA 351.2	Preparation Me	thod: El	PA 351.2			
Nitrogen, Kjeldahl, Total	2000 mg/	kg	150	1	12/04/12 16:31	12/05/12 12:28	7727-37-9	
365.4 Total Phosphorus	Analytical Metho	od: EPA 365.4	Preparation Met	thod: El	PA 365.4			
Phosphorus	897 mg/	kg	39.5	1	11/29/12 08:46	11/29/12 14:09	7723-14-0	M0
Total Organic Carbon	Analytical Metho	d: EPA 9060	Modified					
Surrogates RPD% Total Organic Carbon Total Organic Carbon Mean Total Organic Carbon	19.9 % 14200 mg/ 17300 mg/ 15700 mg/	kg	2130 2330 2230	1 1 1		11/29/12 14:21 11/29/12 14:18 11/29/12 14:21 11/29/12 14:21	7440-44-0 7440-44-0 7440-44-0	

Project:

D DOCK

Pace Project No.:

4070988

Sample: S3 (28.5-30)

Lab ID: 4070988005

Collected: 11/20/12 00:00 Received: 11/21/12 15:30 Matrix: Solid

Results reported	on a	"dry-we	ight"	basis
------------------	------	---------	-------	-------

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8082 GCS PCB	Analytical Meth	nod: EPA 808	2 Preparation Met	nod: EF	PA 3541			
PCB-1016 (Aroclor 1016)	ND ug.	/kg	139	1	11/26/12 12:00	11/27/12 14:23	12674-11-2	
PCB-1221 (Aroclor 1221)	ND ug	/kg	139	1	11/26/12 12:00	11/27/12 14:23	11104-28-2	
PCB-1232 (Aroclor 1232)	ND ug	/kg	139	1	11/26/12 12:00	11/27/12 14:23	11141-16-5	
PCB-1242 (Aroclor 1242)	ND ug	/kg	139	1	11/26/12 12:00	11/27/12 14:23	53469-21-9	
PCB-1248 (Aroclor 1248)	ND ug		139	1	11/26/12 12:00	11/27/12 14:23	12672-29-6	
PCB-1254 (Aroclor 1254)	214 ug/	/kg	139	1	11/26/12 12:00	11/27/12 14:23	11097-69-1	
PCB-1260 (Aroclor 1260)	ND ug/		139	1	11/26/12 12:00	11/27/12 14:23	11096-82-5	
PCB, Total Surrogates	253 ug/	/kg	139	1	11/26/12 12:00	11/27/12 14:23	1336-36-3	
Tetrachloro-m-xylene (S)	78 %.		43-130	1	11/26/12 12:00	11/27/12 14:23	877-09-8	
Decachlorobiphenyl (S)	74 %.		48-130	1	11/26/12 12:00	11/27/12 14:23	2051-24-3	
6010 MET ICP	Analytical Meth	od: EPA 601	O Preparation Meth	nod: EP	A 3050			
Arsenic	3.2 mg		2.4	1	11/27/12 16:30	11/28/12 10:58	7440-38-2	
Barium	32.6 mg	/kg	0.60	1	11/27/12 16:30	11/28/12 10:58	7440-39-3	
Cadmium	ND mg		0.60	1	11/27/12 16:30	11/28/12 10:58	7440-43-9	
Chromium	15.0 mg	/kg	0.60	1	11/27/12 16:30	11/28/12 10:58	7440-47-3	
_ead	15.0 mg		1.2	1	11/27/12 16:30	11/28/12 10:58	7439-92-1	
Selenium	ND mg		2.4	1	11/27/12 16:30	11/28/12 10:58	7782-49-2	
Silver	ND mg	/kg	1.2	1	11/27/12 16:30	11/28/12 10:58	7440-22-4	
471 Mercury	Analytical Meth	od: EPA 747	Preparation Meth	od: EP	A 7471			
Mercury	0.061 mg	/kg	0.0072	1	12/03/12 10:03	12/03/12 14:07	7439-97-6	
270 MSSV PAH by SIM	Analytical Meth	od: EPA 8270	by SIM Preparati	on Meti	nod: EPA 3546			
Acenaphthene	979 ug/	kg	695	5	11/28/12 06:18	11/29/12 21:49	83-32-9	
Acenaphthylene	ND ug/	kg	695	5	11/28/12 06:18	11/29/12 21:49	208-96-8	
Anthracene	3210 ug/	kg	695	5	11/28/12 06:18	11/29/12 21:49	120-12-7	
Benzo(a)anthracene	3990 ug/	kg	695	5	11/28/12 06:18	11/29/12 21:49	56-55-3	
Benzo(a)pyrene	3660 ug/l	kg	695	5	11/28/12 06:18	11/29/12 21:49	50-32-8	
Benzo(b)fluoranthene	2800 ug/l	kg	695	5	11/28/12 06:18	11/29/12 21:49	205-99-2	
Benzo(g,h,i)perylene	1730 ug/l	kg	695	5	11/28/12 06:18	11/29/12 21:49	191-24-2	
Benzo(k)fluoranthene	3590 ug/l	kg	695	5	11/28/12 06:18	11/29/12 21:49	207-08-9	
Chrysene	4440 ug/l	kg	695	5	11/28/12 06:18	11/29/12 21:49	218-01-9	
Dibenz(a,h)anthracene	ND ug/l	kg	695	5	11/28/12 06:18	11/29/12 21:49	53-70-3	
luoranthene	11600 ug/l	kg	695	5	11/28/12 06:18	11/29/12 21:49	206-44-0	
luorene	1510 ug/l	kg	695	5	11/28/12 06:18	11/29/12 21:49	86-73-7	
ndeno(1,2,3-cd)pyrene	1620 ug/l	kg	695	5		11/29/12 21:49		
laphthalene	930 ug/k		695	5	11/28/12 06:18	11/29/12 21:49	91-20-3	
henanthrene	11600 ug/k	кg	695	5	11/28/12 06:18	11/29/12 21:49	85-01-8	
yrene	8400 ug/k	κg	695	5	11/28/12 06:18	11/29/12 21:49	129-00-0	
Surrogates								
-Fluorobiphenyl (S)	54 %.		43-130	5	11/28/12 06:18	11/29/12 21:49	321-60-8	
erphenyl-d14 (S)	58 %.		32-130	5	11/28/12 06:18	11/20/12 21:40	1719-51-0	

Date: 12/05/2012 04:21 PM

Project: D DOCK
Pace Project No.: 4070988

Sample: S3 (28.5-30) Lab ID: 4070988005 Collected: 11/20/12 00:00 Received: 11/21/12 15:30 Matrix: Solid

Results reported on a "dry-weight"	basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Met	hod: ASTM D	2974-87					
Percent Moisture	28.1 %	6	0.10	1		12/03/12 14:01		
300.0 IC Anions	Analytical Met	hod: EPA 300	.0 Preparation Me	thod: E	PA 300.0			
Nitrate as N Nitrite as N Nitrogen, NO2 plus NO3	ND m ND m ND m	g/kg	5.6 2.8 5.6	1 1 1	11/27/12 21:31 11/27/12 21:31 11/27/12 21:31	11/29/12 02:44		
350.1 Ammonia	Analytical Met	hod: EPA 350	.1 Preparation Me	thod: E	PA 350.1			
Nitrogen, Ammonia	72.1 mg/kg		19.0	1	11/28/12 19:33	11/28/12 22:05	7664-41-7	
351.2 Total Kjeldahl Nitrogen	Analytical Met	hod: EPA 351.	.2 Preparation Me	thod: E	PA 351.2			
Nitrogen, Kjeldahl, Total	507 m	g/kg	116	1	12/04/12 16:31	12/05/12 12:29	7727-37-9	
365.4 Total Phosphorus	Analytical Met	hod: EPA 365.	.4 Preparation Me	thod: E	PA 365.4			
Phosphorus	393 m	g/kg	38.4	1	12/03/12 09:55	12/03/12 15:39	7723-14-0	
Total Organic Carbon	Analytical Met	hod: EPA 9060	0 Modified					
Surrogates RPD% Total Organic Carbon Total Organic Carbon Mean Total Organic Carbon	0.89 % 8720 m 8650 m 8690 m	g/kg	3330 3330 3330	1 1 1		11/29/12 14:55 11/29/12 14:52 11/29/12 14:55 11/29/12 14:55	7440-44-0 7440-44-0 7440-44-0	

Project:

D DOCK

Pace Project No.:

4070988

Sample: S4 (21-26.5) Lab

Lab ID: 4070988006 Collected: 11/20/12 00:00 Received: 11/21/12 15:30 Matrix: Solid

Results reported on a "dry-wei	ight" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical Meth	od: EPA 808	2 Preparation Met	hod: El	PA 3541			
PCB-1016 (Aroclor 1016)	ND ug/	/kg	225	1	11/26/12 12:00	11/27/12 14:41	12674-11-2	
PCB-1221 (Aroclor 1221)	ND ug/	/kg	225	1	11/26/12 12:00	11/27/12 14:41	11104-28-2	
PCB-1232 (Aroclor 1232)	ND ug/	kg	225	1	11/26/12 12:00	11/27/12 14:41	11141-16-5	
PCB-1242 (Aroclor 1242)	ND ug/	'kg	225	1	11/26/12 12:00	11/27/12 14:41	53469-21-9	
PCB-1248 (Aroclor 1248)	ND ug/	'kg	225	1	11/26/12 12:00	11/27/12 14:41	12672-29-6	
PCB-1254 (Aroclor 1254)	ND ug/	'kg	225	1	11/26/12 12:00	11/27/12 14:41	11097-69-1	
PCB-1260 (Aroclor 1260)	ND ug/	•	225	1		11/27/12 14:41		
PCB, Total	ND ug/	_	225	1		11/27/12 14:41		
Surrogates		3						
Tetrachloro-m-xylene (S)	85 %.		43-130	1	11/26/12 12:00	11/27/12 14:41	877-09-8	
Decachlorobiphenyl (S)	79 %.		48-130	1	11/26/12 12:00	11/27/12 14:41	2051-24-3	
6010 MET ICP	Analytical Meth	od: EPA 601	0 Preparation Meth	nod: EF	PA 3050			
Arsenic	6.2 mg	/ka	3.8	1	11/27/12 16:30	11/28/12 11:00	7440-38-2	
Barium	128 mg	-	0.96	1		11/28/12 11:00		
Cadmium	ND mg	•	0.96	1		11/28/12 11:00		
Chromium	28.0 mg	_	0.96	1		11/28/12 11:00		
Lead	21.1 mg/		1.9	1		11/28/12 11:00		
Selenium	ND mg/	•	3.8	1		11/28/12 11:00		
Silver	ND mg/		1.9	1		11/28/12 11:00		
7471 Mercury			1 Preparation Meth					
Mercury	0.096 mg/	/kg	0.014	1	12/03/12 10:03	12/03/12 14:09	7439-97-6	
8270 MSSV PAH by SIM	Analytical Metho	od: EPA 8270	0 by SIM Preparati	on Met	thod: EPA 3546			
Acenaphthene	ND ug/l	ka	225	1	11/28/12 06:18	11/28/12 19:04	83-32-9	
Acenaphthylene	ND ug/l	-	225	1		11/28/12 19:04		
Anthracene	ND ug/l	•	225	1		11/28/12 19:04		
Benzo(a)anthracene	ND ug/l	7	225	1		11/28/12 19:04		
Benzo(a)pyrene	ND ug/l	_	225	1		11/28/12 19:04		
Benzo(b)fluoranthene	ND ug/k		225	1		11/28/12 19:04		
Benzo(g,h,i)perylene	ND ug/k	•	225	1		11/28/12 19:04		
Benzo(k)fluoranthene	ND ug/k	· -	225	1		11/28/12 19:04		
Chrysene	ND ug/k	•	225	1		11/28/12 19:04		
Dibenz(a,h)anthracene	ND ug/k		225	1		11/28/12 19:04		
Fluoranthene	ND ug/k		225	1		11/28/12 19:04		
Fluorene	ND ug/k	-	225	1		11/28/12 19:04		
Indeno(1,2,3-cd)pyrene	ND ug/k		225	1		11/28/12 19:04		
Naphthalene	ND ug/k	-	225	1		11/28/12 19:04		
Phenanthrene		_						
	ND ug/k	-	225	1		11/28/12 19:04		
Pyrene Surrogates	ND ug/k	y	225	1	11/28/12 00:18	11/28/12 19:04	129-00-0	
2-Fluorobiphenyl (S)	53 %.		43-130	1	11/28/12 06:18	11/28/12 19:04	321-60-8	

Date: 12/05/2012 04:21 PM

Terphenyl-d14 (S)

32-130

11/28/12 06:18 11/28/12 19:04 1718-51-0

61 %.

Project:

D DOCK

Pace Project No.:

4070988

Sample: S4 (21-26.5)

Lab ID: 4070988006

Collected: 11/20/12 00:00 Received: 11/21/12 15:30 Matrix: Solid

Results	reported	on a	"dry-weight"	basis '
---------	----------	------	--------------	---------

Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Met	hod: ASTM D	2974-87					
Percent Moisture	55.6 %	1	0.10	1		12/03/12 14:01		
300.0 IC Anions	Analytical Met	hod: EPA 300	.0 Preparation Me	thod: E	PA 300.0			
Nitrate as N	ND m	g/kg	9.0	1	11/27/12 21:31	11/29/12 02:54	14797-55-8	
Nitrite as N	ND m	g/kg	4.5	1	11/27/12 21:31	11/29/12 02:54	14797-65-0	
Nitrogen, NO2 plus NO3	ND m	g/kg	9.0	1	11/27/12 21:31	11/29/12 02:54		
350.1 Ammonia	Analytical Met	hod: EPA 350.	1 Preparation Met	thod: E	PA 350.1			
Nitrogen, Ammonia	253 m	g/kg	30.7	1	11/28/12 19:33	11/28/12 22:06	7664-41-7	
351.2 Total Kjeldahl Nitrogen	Analytical Met	hod: EPA 351.	2 Preparation Met	thod: E	PA 351.2			
Nitrogen, Kjeldahl, Total	2330 m	g/kg	180	1	12/04/12 16:31	12/05/12 12:29	7727-37-9	
365.4 Total Phosphorus	Analytical Met	hod: EPA 365.	4 Preparation Met	thod: El	PA 365.4			
Phosphorus	1010 m	g/kg	69.2	1	12/03/12 09:55	12/03/12 15:39	7723-14-0	
Total Organic Carbon	Analytical Met	hod: EPA 9060) Modified					
Surrogates	g ran as							
RPD%	1.0 %			1		11/29/12 15:25		
Total Organic Carbon	12500 mg		2500	1		11/29/12 15:14	7440-44-0	
Total Organic Carbon	12600 mg		2560	1		11/29/12 15:25	7440-44-0	
Mean Total Organic Carbon	12600 mg	g/kg	2530	1		11/29/12 15:25	7440-44-0	

Project:

D DOCK

Pace Project No.: 4070988

Sample: S4 (26.5-30) Lab ID: 4070988007 Collected: 11/20/12 00:00 Received: 11/21/12 15:30 Matrix: Solid Results reported on a "dry-weight" hasis

Results reported on a "dry-weig	ght" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qu
8082 GCS PCB	Analytical Metho	od: EPA 8082	2 Preparation Met	nod: EP	PA 3541			
PCB-1016 (Aroclor 1016)	ND ug/k	κg	124	1	11/26/12 12:00	11/27/12 14:59	12674-11-2	
PCB-1221 (Aroclor 1221)	ND ug/k	_	124	1	11/26/12 12:00	11/27/12 14:59	11104-28-2	
PCB-1232 (Aroclor 1232)	ND ug/k	~	124	1	11/26/12 12:00	11/27/12 14:59	11141-16-5	
PCB-1242 (Aroclor 1242)	ND ug/k	_	124	1	11/26/12 12:00	11/27/12 14:59	53469-21-9	
PCB-1248 (Aroclor 1248)	ND ug/k		124	1	11/26/12 12:00	11/27/12 14:59	12672-29-6	
PCB-1254 (Aroclor 1254)	ND ug/k	•	124	1		11/27/12 14:59		
PCB-1260 (Aroclor 1260)	ND ug/k	•	124	1		11/27/12 14:59		
PCB, Total	ND ug/k		124	1	11/26/12 12:00	11/27/12 14:59	1336-36-3	
Surrogates		.5						
Tetrachloro-m-xylene (S)	87 %.		43-130	1	11/26/12 12:00	11/27/12 14:59	877-09-8	
Decachlorobiphenyl (S)	83 %.		48-130	1	11/26/12 12:00	11/27/12 14:59	2051-24-3	
010 MET ICP	Analytical Metho	d: EPA 6010	Preparation Meth	nod: EP	A 3050			
Arsenic	ND mg/l	kg	2.1	1	11/29/12 10:15	11/29/12 18:48	7440-38-2	
Barium	42.2 mg/l	kg	0.52	1	11/29/12 10:15	11/29/12 18:48	7440-39-3	
Cadmium	ND mg/l		0.52	1	11/29/12 10:15	11/29/12 18:48	7440-43-9	
Chromium	16.8 mg/l		0.52	1	11/29/12 10:15	11/29/12 18:48	7440-47-3	
ead	3.0 mg/l		1.0	1		11/29/12 18:48		
Selenium	ND mg/l	•	2.1	1		11/29/12 18:48		
Silver	ND mg/l	-	1.0	1		11/29/12 18:48		
471 Mercury	Analytical Metho	d: EPA 7471	Preparation Meth	nod: EP	A 7471			
Mercury	0.034 mg/k	кg	0.0072	1	12/03/12 10:03	12/03/12 14:11	7439-97-6	
270 MSSV PAH by SIM	Analytical Metho	d: EPA 8270	by SIM Preparati	on Meti	hod: EPA 3546			
cenaphthene	ND ug/k	g	124	1	11/28/12 06:18	11/28/12 19:22	83-32-9	
cenaphthylene	ND ug/k	g	124	1	11/28/12 06:18	11/28/12 19:22	208-96-8	
nthracene	ND ug/k	g	124	1	11/28/12 06:18	11/28/12 19:22	120-12-7	
Benzo(a)anthracene	ND ug/k	g	124	1	11/28/12 06:18	11/28/12 19:22	56-55-3	
Benzo(a)pyrene	ND ug/k	g	124	1	11/28/12 06:18	11/28/12 19:22	50-32-8	
Benzo(b)fluoranthene	ND ug/kg	g	124	1	11/28/12 06:18	11/28/12 19:22	205-99-2	
Benzo(g,h,i)perylene	ND ug/k	g	124	1	11/28/12 06:18	11/28/12 19:22	191-24-2	
Benzo(k)fluoranthene	ND ug/k	g	124	1	11/28/12 06:18	11/28/12 19:22	207-08-9	
Chrysene	ND ug/k	g	124	1	11/28/12 06:18	11/28/12 19:22	218-01-9	
Dibenz(a,h)anthracene	ND ug/k		124	1	11/28/12 06:18	11/28/12 19:22	53-70-3	
luoranthene	ND ug/k		124	1	11/28/12 06:18	11/28/12 19:22	206-44-0	
luorene	ND ug/kg	-	124	1		11/28/12 19:22		
ndeno(1,2,3-cd)pyrene	ND ug/kg		124	1	11/28/12 06:18	11/28/12 19:22	193-39-5	
laphthalene	ND ug/kg		124	1		11/28/12 19:22		
henanthrene	ND ug/kg		124	1		11/28/12 19:22		
	ND ug/kg		124	1		11/28/12 19:22		
vrene				•	00.10	0 10 2		
*** C. A. C.	ND dg/k							
lyrene Surrogates -Fluorobiphenyl (S)	60 %.		43-130	1	11/28/12 06:18	11/28/12 19:22	321-60-8	

Date: 12/05/2012 04:21 PM

Project:

D DOCK

Pace Project No.:

4070988

Sample: S4 (26.5-30)

Lab ID: 4070988007

Collected: 11/20/12 00:00 Received: 11/21/12 15:30 Matrix: Solid

Results reported on a "dry-weight" basis

Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Met	hod: ASTM D	2974-87					
Percent Moisture	19.1 %		0.10	1		12/03/12 14:42		
300.0 IC Anions	Analytical Met	hod: EPA 300	.0 Preparation Met	hod: E	PA 300.0			
Nitrate as N	ND m	g/kg	4.9	1	11/27/12 21:31	11/29/12 03:04	14797-55-8	
Nitrite as N	ND m	g/kg	2.4	1	11/27/12 21:31	11/29/12 03:04	14797-65-0	
Nitrogen, NO2 plus NO3	ND m	g/kg	4.9	1	11/27/12 21:31	11/29/12 03:04		
350.1 Ammonia	Analytical Met	hod: EPA 350	.1 Preparation Met	hod: E	PA 350.1			
Nitrogen, Ammonia	44.4 m	g/kg	15.5	1	11/28/12 19:33	11/28/12 22:07	7664-41-7	
351.2 Total Kjeldahl Nitrogen	Analytical Met	nod: EPA 351.	.2 Preparation Met	hod: E	PA 351.2			
Nitrogen, Kjeldahl, Total	480 mg	g/kg	107	1	12/04/12 16:31	12/05/12 12:32	7727-37-9	
365.4 Total Phosphorus	Analytical Meti	nod: EPA 365.	.4 Preparation Met	hod: E	PA 365.4			
Phosphorus	308 mg	g/kg	23.0	1	12/03/12 09:55	12/03/12 15:40	7723-14-0	
Total Organic Carbon	Analytical Meth	nod: EPA 9060	0 Modified					
Surrogates RPD%	20.0 %			1		11/29/12 15:32		
Total Organic Carbon	322 mg	n/ka	254	1		11/29/12 15:32	7440-44-0	
	College Colleg			1				
Total Organic Carbon	393 mg	- Company (1997)	248	1				
Mean Total Organic Carbon	358 mg	у/кд	251	1		11/29/12 15:32	7440-44-0	

Project:

D DOCK

Pace Project No.:

4070988

QC Batch:

MERP/3407

Analysis Method:

EPA 7471

QC Batch Method:

EPA 7471

Analysis Description:

7471 Mercury

Associated Lab Samples:

4070988001, 4070988002, 4070988003, 4070988004, 4070988005, 4070988006, 4070988007

METHOD BLANK: 720104

Matrix: Solid

Associated Lab Samples:

4070988001, 4070988002, 4070988003, 4070988004, 4070988005, 4070988006, 4070988007

Blank

Reporting

Parameter

Units Result Limit

Analyzed

Qualifiers

Mercury

mg/kg

ND

0.0067

12/03/12 13:42

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

720105

Units

4070847032

Result

0.015

Spike

Conc.

LCS Result

LCS % Rec % Rec

Qualifiers

Mercury

Mercury

mg/kg

Units

mg/kg

Conc. .17

0.17

720107

Result

0.36

102

Limits 85-115

101

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

720106

Conc.

MS MSD Spike Spike

.33

.33

MS MSD

% Rec Result

0.36

MS

100

MSD % Rec % Rec Limits

85-115

Max RPD RPD

Qual 20

Date: 12/05/2012 04:21 PM

Project:

D DOCK

Pace Project No.:

4070988

QC Batch:

MPRP/7841

Analysis Method:

EPA 6010

QC Batch Method:

EPA 3050

Analysis Description:

6010 MET

Associated Lab Samples:

4070988001, 4070988002, 4070988003, 4070988004, 4070988005, 4070988006

METHOD BLANK: 718127

Matrix: Solid

Associated Lab Samples:

4070988001, 4070988002, 4070988003, 4070988004, 4070988005, 4070988006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND	2.0	11/28/12 10:35	
Barium	mg/kg	ND	0.50	11/28/12 10:35	
Cadmium	mg/kg	ND	0.50	11/28/12 10:35	
Chromium	mg/kg	ND	0.50	11/28/12 10:35	
Lead	mg/kg	ND	1.0	11/28/12 10:35	
Selenium	mg/kg	ND	2.0	11/28/12 10:35	
Silver	mg/kg	ND	1.0	11/28/12 10:35	

LABORATORY CONTROL SAMPLE: 718128

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg	50	48.7	97	80-120	
Barium	mg/kg	50	48.4	97	80-120	
Cadmium	mg/kg	50	48.3	97	80-120	
Chromium	mg/kg	50	48.0	96	80-120	
Lead	mg/kg	50	49.2	98	80-120	
Selenium	mg/kg	50	47.9	96	80-120	
Silver	mg/kg	25	23.9	95	80-120	

MATRIX SPIKE & MATRIX S	PIKE DUPLICATE	71812	9		718130							
			MS	MSD								
	40	70988001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/kg	ND	63.3	63.3	57.4	58.1	88	89	75-125	1	20	-
Barium	mg/kg	11.7	63.3	63.3	70.1	69.2	92	91	75-125	1	20	
Cadmium	mg/kg	ND	63.3	63.3	56.7	57.4	90	91	75-125	1	20	
Chromium	mg/kg	7.6	63.3	63.3	62.8	64.2	87	89	75-125	2	20	
Lead	mg/kg	3.1	63.3	63.3	59.1	60.2	88	90	75-125	2	20	
Selenium	mg/kg	ND	63.3	63.3	55.1	55.2	87	87	75-125	0	20	
Silver	mg/kg	ND	31.6	31.6	28.0	28.5	88	90	75-125	2	20	

Project:

D DOCK

Pace Project No.:

4070988

QC Batch:

MPRP/7854

Analysis Method:

EPA 6010

QC Batch Method:

EPA 3050

Analysis Description:

6010 MET

Associated Lab Samples:

4070988007

Matrix: Solid

METHOD BLANK: 719264 Associated Lab Samples:

4070988007

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND	2.0	11/29/12 18:18	
Barium	mg/kg	ND	0.50	11/29/12 18:18	
Cadmium	mg/kg	ND	0.50	11/29/12 18:18	
Chromium	mg/kg	ND	0.50	11/29/12 18:18	
Lead	mg/kg	ND	1.0	11/29/12 18:18	
Selenium	mg/kg	ND	2.0	11/29/12 18:18	
Silver	mg/kg	ND	1.0	11/29/12 18:18	

LABORATORY	CONTROL	CAMPIE.	719265
LABURATURT	CONTROL	SAIVIPLE.	/ 19200

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg	50	45.4	91	80-120	
Barium	mg/kg	50	46.6	93	80-120	
Cadmium	mg/kg	50	45.9	92	80-120	
Chromium	mg/kg	50	46.9	94	80-120	
Lead	mg/kg	50	46.2	92	80-120	
Selenium	mg/kg	50	44.6	89	80-120	
Silver	mg/kg	25	23.0	92	80-120	

MATRIX SPIKE & MATRIX S	PIKE DUPLICATE	71926	6		719267							
			MS	MSD								
	407	1083001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/kg	0.97J	51.1	51	46.7	45.4	89	87	75-125	3	20	
Barium	mg/kg	12.4	51.1	51	63.6	60.0	100	93	75-125	6	20	
Cadmium	mg/kg	< 0.032	51.1	51	44.7	45.1	88	88	75-125	1	20	
Chromium	mg/kg	6.7	51.1	51	56.1	52.4	97	90	75-125	7	20	
Lead	mg/kg	1.1	51.1	51	46.6	47.2	89	90	75-125	1	20	
Selenium	mg/kg	< 0.50	51.1	51	43.1	43.9	84	86	75-125	2	20	
Silver	mg/kg	< 0.23	25.6	25.5	22.5	22.5	88	88	75-125	0	20	

Project:

D DOCK

Pace Project No.:

4070988

QC Batch:

OEXT/17037

Analysis Method:

EPA 8082

QC Batch Method: E

EPA 3541

Analysis Description:

8082 GCS PCB

Associated Lab Samples:

4070988001, 4070988002, 4070988003, 4070988004, 4070988005, 4070988006, 4070988007

METHOD BLANK: 717444

Matrix: Solid

Associated Lab Samples:

4070988001, 4070988002, 4070988003, 4070988004, 4070988005, 4070988006, 4070988007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	ND	100	11/27/12 10:30	
PCB-1221 (Aroclor 1221)	ug/kg	ND	100	11/27/12 10:30	
PCB-1232 (Aroclor 1232)	ug/kg	ND	100	11/27/12 10:30	
PCB-1242 (Aroclor 1242)	ug/kg	ND	100	11/27/12 10:30	
PCB-1248 (Aroclor 1248)	ug/kg	ND	100	11/27/12 10:30	
PCB-1254 (Aroclor 1254)	ug/kg	ND	100	11/27/12 10:30	
PCB-1260 (Aroclor 1260)	ug/kg	ND	100	11/27/12 10:30	
Decachlorobiphenyl (S)	%.	85	48-130	11/27/12 10:30	
Tetrachloro-m-xylene (S)	%.	90	43-130	11/27/12 10:30	

LABORATORY CONTROL SAM	IPLE: 717445					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg		ND			
PCB-1221 (Aroclor 1221)	ug/kg		ND			
PCB-1232 (Aroclor 1232)	ug/kg		ND			
PCB-1242 (Aroclor 1242)	ug/kg		ND			
PCB-1248 (Aroclor 1248)	ug/kg		ND			
PCB-1254 (Aroclor 1254)	ug/kg		ND			
PCB-1260 (Aroclor 1260)	ug/kg	500	481	96	57-130	
Decachlorobiphenyl (S)	%.			87	48-130	
Tetrachloro-m-xylene (S)	%			90	43-130	

MATRIX SPIKE & MATRIX SF	PIKE DUPLICAT	E: 71744	6		717447							
			MS	MSD								
	40	070996001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
PCB-1016 (Aroclor 1016)	ug/kg	<27.5			ND	ND					20	
PCB-1221 (Aroclor 1221)	ug/kg	<27.5			ND	ND					20	
PCB-1232 (Aroclor 1232)	ug/kg	<27.5			ND	ND					20	
PCB-1242 (Aroclor 1242)	ug/kg	<27.5			ND	ND					20	
PCB-1248 (Aroclor 1248)	ug/kg	<27.5			ND	ND					20	
PCB-1254 (Aroclor 1254)	ug/kg	<27.5			ND	ND					20	
PCB-1260 (Aroclor 1260)	ug/kg	<27.5	582	582	562	551	97	95	33-164	2	20	
Decachlorobiphenyl (S)	%.						87	85	48-130			
Tetrachloro-m-xylene (S)	%.						87	86	43-130			

Project:

D DOCK

Pace Project No.:

4070988

QC Batch:

OEXT/17040

Analysis Method:

EPA 8270 by SIM

QC Batch Method: EPA 3546 Analysis Description:

8270/3546 MSSV PAH by SIM

Associated Lab Samples:

METHOD BLANK: 717640

Matrix: Solid

Associated Lab Samples:

4070988001

4070988001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers	
Acenaphthene	ug/kg	ND	16.7	11/27/12 08:46		
Acenaphthylene	ug/kg	ND	16.7	11/27/12 08:46		
Anthracene	ug/kg	ND	16.7	11/27/12 08:46		
Benzo(a)anthracene	ug/kg	ND	16.7	11/27/12 08:46		
Benzo(a)pyrene	ug/kg	ND	16.7	11/27/12 08:46		
Benzo(b)fluoranthene	ug/kg	ND	16.7	11/27/12 08:46		
Benzo(g,h,i)perylene	ug/kg	ND	16.7	11/27/12 08:46		
Benzo(k)fluoranthene	ug/kg	ND	16.7	11/27/12 08:46		
Chrysene	ug/kg	ND	16.7	11/27/12 08:46		
Dibenz(a,h)anthracene	ug/kg	ND	16.7	11/27/12 08:46		
Fluoranthene	ug/kg	ND	16.7	11/27/12 08:46		
Fluorene	ug/kg	ND	16.7	11/27/12 08:46		
Indeno(1,2,3-cd)pyrene	ug/kg	ND	16.7	11/27/12 08:46		
Naphthalene	ug/kg	ND	16.7	11/27/12 08:46		
Phenanthrene	ug/kg	ND	16.7	11/27/12 08:46		
Pyrene	ug/kg	ND	16.7	11/27/12 08:46		
2-Fluorobiphenyl (S)	%.	77	43-130	11/27/12 08:46		
Terphenyl-d14 (S)	%.	97	32-130	11/27/12 08:46		

LABORATORY CONTROL SAMPLE:

717641

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Acenaphthene	ug/kg	333	229	69	51-130	
Acenaphthylene	ug/kg	333	225	67	53-130	
Anthracene	ug/kg	333	271	81	48-130	
Benzo(a)anthracene	ug/kg	333	226	68	55-130	
Benzo(a)pyrene	ug/kg	333	260	78	56-130	
Benzo(b)fluoranthene	ug/kg	333	228	68	53-130	
Benzo(g,h,i)perylene	ug/kg	333	251	75	58-130	
Benzo(k)fluoranthene	ug/kg	333	257	77	55-130	
Chrysene	ug/kg	333	246	74	59-130	
Dibenz(a,h)anthracene	ug/kg	333	259	78	56-130	
Fluoranthene	ug/kg	333	259	78	56-130	
Fluorene	ug/kg	333	237	71	54-130	
Indeno(1,2,3-cd)pyrene	ug/kg	333	250	75	57-130	
Naphthalene	ug/kg	333	243	73	43-130	
Phenanthrene	ug/kg	333	246	74	56-130	
Pyrene	ug/kg	333	221	66	54-130	
2-Fluorobiphenyl (S)	%.			76	43-130	
Terphenyl-d14 (S)	%.			93	32-130	

Date: 12/05/2012 04:21 PM

Project:

D DOCK

Pace Project No.: 4070988

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 71764	2		717643							
			MS	MSD								
	40	070945001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Acenaphthene	ug/kg	30.9J	333	333	288	249	77	65	40-130	15	20	
Acenaphthylene	ug/kg	<16.7	333	333	257	227	74	65	40-130	13	20	
Anthracene	ug/kg	69.1	333	333	325	297	77	68	46-130	9	24	
Benzo(a)anthracene	ug/kg	230	333	333	433	455	61	67	42-130	5	25	
Benzo(a)pyrene	ug/kg	540	333	333	769	819	69	84	40-130	6	31	
Benzo(b)fluoranthene	ug/kg	367	333	333	779	660	123	88	45-130	16	29	
Benzo(g,h,i)perylene	ug/kg	427	333	333	522	494	28	20	16-143	5	23	
Benzo(k)fluoranthene	ug/kg	376	333	333	586	729	63	106	38-130	22	33	
Chrysene	ug/kg	373	333	333	579	604	62	69	38-130	4	31	
Dibenz(a,h)anthracene	ug/kg	122	333	333	290	261	50	42	30-135	10	23	
Fluoranthene	ug/kg	539	333	333	716	772	53	70	42-133	7	28	
Fluorene	ug/kg	31.4J	333	333	287	250	77	66	43-130	14	22	
ndeno(1,2,3-cd)pyrene	ug/kg	152	333	333	296	267	43	35	15-150	10	27	
Naphthalene	ug/kg	29.5J	333	333	294	255	79	68	24-130	14	33	
Phenanthrene	ug/kg	316	333	333	558	542	73	68	27-135	3	27	
^D yrene	ug/kg	555	333	333	769	791	64	71	36-130	3	23	
2-Fluorobiphenyl (S)	%.						84	74	43-130			
Terphenyl-d14 (S)	%.						109	95	32-130			

Project:

D DOCK

Pace Project No.:

4070988

QC Batch:

OEXT/17054

Analysis Method:

EPA 8270 by SIM

QC Batch Method:

EPA 3546

Analysis Description:

8270/3546 MSSV PAH by SIM

Associated Lab Samples:

4070988002, 4070988003, 4070988004, 4070988005, 4070988006, 4070988007

METHOD BLANK: 718310

Matrix: Solid

Associated Lab Samples:

4070988002, 4070988003, 4070988004, 4070988005, 4070988006, 4070988007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Acenaphthene	ug/kg	ND	16.7	11/28/12 12:05	
Acenaphthylene	ug/kg	ND	16.7	11/28/12 12:05	
Anthracene	ug/kg	ND	16.7	11/28/12 12:05	
Benzo(a)anthracene	ug/kg	ND	16.7	11/28/12 12:05	
Benzo(a)pyrene	ug/kg	ND	16.7	11/28/12 12:05	
Benzo(b)fluoranthene	ug/kg	ND	16.7	11/28/12 12:05	
Benzo(g,h,i)perylene	ug/kg	ND	16.7	11/28/12 12:05	
Benzo(k)fluoranthene	ug/kg	ND	16.7	11/28/12 12:05	
Chrysene	ug/kg	ND	16.7	11/28/12 12:05	
Dibenz(a,h)anthracene	ug/kg	ND	16.7	11/28/12 12:05	
Fluoranthene	ug/kg	ND	16.7	11/28/12 12:05	
Fluorene	ug/kg	ND	16.7	11/28/12 12:05	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	16.7	11/28/12 12:05	
Naphthalene	ug/kg	ND	16.7	11/28/12 12:05	
Phenanthrene	ug/kg	ND	16.7	11/28/12 12:05	
Pyrene	ug/kg	ND	16.7	11/28/12 12:05	
2-Fluorobiphenyl (S)	%.	74	43-130	11/28/12 12:05	
Terphenyl-d14 (S)	%.	86	32-130	11/28/12 12:05	

LABORATORY CONTROL SAMPLE:	718311					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Acenaphthene	ug/kg	333	227	68	51-130	
Acenaphthylene	ug/kg	333	229	69	53-130	
Anthracene	ug/kg	333	268	80	48-130	
Benzo(a)anthracene	ug/kg	333	221	66	55-130	
Benzo(a)pyrene	ug/kg	333	242	72	56-130	
Benzo(b)fluoranthene	ug/kg	333	244	73	53-130	
Benzo(g,h,i)perylene	ug/kg	333	234	70	58-130	
Benzo(k)fluoranthene	ug/kg	333	220	66	55-130	
Chrysene	ug/kg	333	231	69	59-130	
Dibenz(a,h)anthracene	ug/kg	333	242	73	56-130	
Fluoranthene	ug/kg	333	246	74	56-130	
Fluorene	ug/kg	333	235	71	54-130	
Indeno(1,2,3-cd)pyrene	ug/kg	333	237	71	57-130	
Naphthalene	ug/kg	333	234	70	43-130	
Phenanthrene	ug/kg	333	237	71	56-130	
Pyrene	ug/kg	333	223	67	54-130	
2-Fluorobiphenyl (S)	%.			75	43-130	
Terphenyl-d14 (S)	%.			87	32-130	

Project:

D DOCK

Pace Project No.: 4070988

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 71831	2		718313							
			MS	MSD								
	40	70994008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Acenaphthene	ug/kg	<8.3	333	333	206	205	62	61	40-130	1	20	
Acenaphthylene	ug/kg	<8.3	333	333	210	207	63	62	40-130	1	20	
Anthracene	ug/kg	<1.7	333	333	240	239	72	72	46-130	1	24	
Benzo(a)anthracene	ug/kg	<8.3	333	333	197	199	59	60	42-130	1	25	
Benzo(a)pyrene	ug/kg	<8.3	333	333	220	220	66	66	40-130	0	31	
Benzo(b)fluoranthene	ug/kg	<2.4	333	333	188	191	57	57	45-130	1	29	
Benzo(g,h,i)perylene	ug/kg	<8.3	333	333	222	210	67	63	16-143	5	23	
Benzo(k)fluoranthene	ug/kg	<8.3	333	333	234	231	70	69	38-130	1	33	
Chrysene	ug/kg	<1.9	333	333	210	219	63	66	38-130	4	31	
Dibenz(a,h)anthracene	ug/kg	<8.3	333	333	233	218	70	65	30-135	6	23	
Fluoranthene	ug/kg	<8.3	333	333	225	227	67	68	42-133	1	28	
Fluorene	ug/kg	<8.3	333	333	214	217	64	65	43-130	1	22	
ndeno(1,2,3-cd)pyrene	ug/kg	<8.3	333	333	224	210	67	63	15-150	7	27	
Naphthalene	ug/kg	34.9	333	333	241	212	62	53	24-130	13	33	
Phenanthrene	ug/kg	<2.1	333	333	213	215	64	64	27-135	1	27	
Pyrene	ug/kg	<8.3	333	333	195	199	59	60	36-130	2	23	
2-Fluorobiphenyl (S)	%.						68	69	43-130			
Terphenyl-d14 (S)	%.						77	81	32-130			

Pace Analytical Services, Inc. 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

QUALITY CONTROL DATA

Project

D DOCK

Pace Project No.:

4070988

QC Batch:

PMST/7982

Analysis Method:

ASTM D2974-87

QC Batch Method:

ASTM D2974-87

Analysis Description:

Dry Weight/Percent Moisture

Associated Lab Samples:

Parameter

 $4070988001,\,4070988002,\,4070988003,\,4070988004,\,4070988005,\,4070988006$

SAMPLE DUPLICATE: 721325

4070847018 Result

Dup Result

RPD

Max **RPD**

Qualifiers

Percent Moisture

%

Units

52.5

52.1

10

Pace Analytical Services, Inc. 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

QUALITY CONTROL DATA

Project:

D DOCK

Pace Project No.:

4070988

QC Batch:

PMST/7983

QC Batch Method:

Parameter

ASTM D2974-87

4070988007

Analysis Method:

ASTM D2974-87

Analysis Description:

Dry Weight/Percent Moisture

Associated Lab Samples: SAMPLE DUPLICATE: 721369

4070988007 Result

Dup Result

RPD

Max RPD

Qualifiers

Percent Moisture

%

Units

19.1

20.0

5

10

Project:

D DOCK

Pace Project No.:

4070988

QC Batch:

WETA/15297

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

Analysis Description:

300.0 IC Anions

Associated Lab Samples:

4070988001, 4070988002, 4070988003, 4070988004, 4070988005, 4070988006, 4070988007

METHOD BLANK: 718202

Matrix: Solid

Associated Lab Samples: 4070988001, 4070988002, 4070988003, 4070988004, 4070988005, 4070988006, 4070988007

Reporting

Parameter	Units	Result	Limit	Analyzed	Qualifiers
Nitrate as N	mg/kg	ND	4.0	11/28/12 23:51	
Nitrite as N	mg/kg	ND	2.0	11/28/12 23:51	
Nitrogen, NO2 plus NO3	mg/kg	ND	4.0	11/28/12 23:51	

LABORATORY CONTROL SAMPLE:

718203

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Nitrate as N	mg/kg	20	19.4	97	80-120	
Nitrite as N	mg/kg	10	10.1	101	80-120	
Nitrogen, NO2 plus NO3	mg/kg	30	29.5	98		

MATRIX SPIKE & MATRIX SI	PIKE DUPLICATE	E: 71820	4		718205							
			MS	MSD								
	102	13325001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nitrate as N	mg/kg	ND	20.2	20.2	23.9	24.2	104	105	80-120	1	20	
Nitrite as N	mg/kg	ND	10.1	10.1	10.7	10.7	96	96	80-120	0	20	
Nitrogen, NO2 plus NO3	mg/kg	4.0	30.2	30.2	34.6	34.9	101	102		1		

MATRIX SPIKE & MATRIX S	PIKE DUPLICATI	E: 71820	6		718207							
			MS	MSD								
	40	70988001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nitrate as N	mg/kg	ND	24.9	24.9	24.5	24.9	90	91	80-120	2	20	
Nitrite as N	mg/kg	ND	12.4	12.4	12.6	12.6	101	101	80-120	0	20	
Nitrogen, NO2 plus NO3	mg/kg	ND	37.3	37.3	37.1	37.5	93	94		1		

Project:

D DOCK

Pace Project No.:

4070988

QC Batch:

WETA/15265

Analysis Method:

EPA 350.1

QC Batch Method:

EPA 350.1

Analysis Description:

350.1 Ammonia

Associated Lab Samples:

4070988001, 4070988002, 4070988003, 4070988004, 4070988005, 4070988006, 4070988007

METHOD BLANK: 717549

Matrix: Solid

Associated Lab Samples:

4070988001, 4070988002, 4070988003, 4070988004, 4070988005, 4070988006, 4070988007

Blank Result Reporting

Parameter

Units

Limit

Analyzed

Qualifiers

Nitrogen, Ammonia

mg/kg

ND

15.0 11/28/12 21:45

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Parameter

717550

Units

4070942001

Result

Result

18.2

LCS

% Rec

Limits

80-120

Qualifiers

Nitrogen, Ammonia

Nitrogen, Ammonia

Nitrogen, Ammonia

mg/kg

Units

Units

mg/kg

mg/kg

300

Spike

Conc

MS

Spike

Conc.

292

97

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

717551

717552

LCS

Result

MSD

Result

400

385

% Rec

MS

96

102

% Rec

MSD % Rec % Rec Limits

Max RPD RPD

Qual 5 20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

717553

108

717554

MSD

MSD

Spike

Conc.

300

346

MS

Result

381

294

% Rec

80-120

Max Qual

4070988001

MS Spike Spike

271

Conc.

286

MS Conc. Result

MSD MS Result % Rec

MSD % Rec

106

Limits 80-120

RPD **RPD** 27

20 R1

Project:

D DOCK

Pace Project No.:

4070988

QC Batch:

WETA/15405

Analysis Method:

EPA 351.2

QC Batch Method:

EPA 351.2

Analysis Description:

351.2 TKN

Associated Lab Samples:

4070988001, 4070988002, 4070988003, 4070988004, 4070988005, 4070988006, 4070988007

METHOD BLANK: 721453

Matrix: Solid

Associated Lab Samples:

4070988001, 4070988002, 4070988003, 4070988004, 4070988005, 4070988006, 4070988007

Blank Result Reporting

Parameter

Units

Limit

Analyzed

Qualifiers

Nitrogen, Kieldahl, Total

mg/kg

ND

100 12/05/12 12:22

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Parameter

721454

Units

4070988001

Result

Result

69.1J

Spike

MS

Spike

Conc.

Conc.

435

275

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Nitrogen, Kjeldahl, Total

Nitrogen, Kjeldahl, Total

Nitrogen, Kjeldahl, Total

mg/kg

Units

Units

mg/kg

mg/kg

Conc. 500

530

721456

MS

Result

106

80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

721455

117

MSD

Conc.

Spike

MSD

Result

408

MS % Rec

MSD % Rec

108

% Rec Limits

Max RPD RPD Qual 20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

721457

721458

400

270

525

410

MS

106

99

% Rec

Max

RPD RPD Qual

4071174002

MS MSD Spike Spike

MS Conc. Result

MSD Result % Rec 466

MSD % Rec 105

Limits 80-120

80-120

12 20

Project:

D DOCK

Pace Project No.:

4070988

QC Batch:

WETA/15337

Analysis Method:

EPA 365.4

QC Batch Method:

EPA 365.4

Analysis Description:

365.4 Total Phosphorus

Associated Lab Samples: METHOD BLANK: 719248

4070988001, 4070988002, 4070988003, 4070988004

Matrix: Solid

Associated Lab Samples:

4070988001, 4070988002, 4070988003, 4070988004

Blank Result Reporting Limit

Analyzed

Qualifiers

Phosphorus

mg/kg

Units

Units

4070815015

4070988004

Result

Result

ND

40.0 11/29/12 13:53

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Parameter

Parameter

719249

Spike Conc.

MS

Spike

Conc.

LCS Result

LCS % Rec

MSD

Result

% Rec Limits

80-120

Phosphorus

Phosphorus

Phosphorus

mg/kg

Units

Units

mg/kg

mg/kg

500

509

102

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

719250

719251

MSD

Spike

Conc.

Conc.

495

664

MS

1310

1270

Result

MS % Rec

80

76

MSD % Rec

% Rec Limits

Max RPD RPD Qual 20

784

719253

1360

% Rec

80-120

3

Max Qual

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

719252

897

MS MSD Spike Spike

495

Conc.

664

MS Result

MSD MS Result % Rec 1310

MSD % Rec 83

Limits 80-120

RPD RPD 3 20 MO

Project:

D DOCK

Pace Project No.:

4070988

QC Batch:

WETA/15375

Analysis Method:

EPA 365.4

QC Batch Method:

EPA 365.4

Analysis Description:

365.4 Total Phosphorus

Associated Lab Samples:

4070988005, 4070988006, 4070988007

METHOD BLANK: 721176

Matrix: Solid

Associated Lab Samples:

4070988005, 4070988006, 4070988007

Units

Units

Blank Result Reporting Limit

Analyzed

Qualifiers

Phosphorus

mg/kg

ND

40.0 12/03/12 15:38

LABORATORY CONTROL SAMPLE: 721177

Parameter

Parameter

Spike

500

Conc.

LCS Result

LCS % Rec % Rec Limits

Phosphorus

mg/kg

493

99

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

721178

721179

MSD

MS MSD

MS

MSD

80-120

% Rec

Max

Qual

Parameter

Units

4071174003 Result

MS Spike Conc.

Spike Conc.

Result Result % Rec

% Rec

Limits

RPD RPD

20

Phosphorus

mg/kg

<11.1

278

294

296

104

104 80-120

Project:

D DOCK

Pace Project No.:

4070988

QC Batch:

WETA/15319

Analysis Method:

EPA 9060 Modified

EPA 9060 Modified

Analysis Description:

QC Batch Method:

9060 TOC Average

Associated Lab Samples:

4070988001, 4070988002, 4070988003, 4070988004

METHOD BLANK: 718663

Matrix: Solid

Associated Lab Samples:

4070988001, 4070988002, 4070988003, 4070988004

Blank Result Reporting

Parameter

Units

Limit

Analyzed

Qualifiers

Mean Total Organic Carbon

mg/kg

ND

11/28/12 13:20

LABORATORY CONTROL SAMPLE:

Parameter

718664

Spike Conc. LCS

LCS

% Rec Limits

Qualifiers

Mean Total Organic Carbon

Parameter

Units mg/kg

Units

Units

mg/kg

mg/kg

1000

1060

106

80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

718665

4070847018

Result

718666

Result

MSD

Spike

Conc.

10800

MS

Result

MS

19200

18300

MSD Result

% Rec

MS % Rec MSD

117

% Rec

% Rec Max Limits

RPD RPD Qual 16 30

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

718667

8100

8940

718668

20700

21600

100

103

50-150

Max

Parameter Mean Total Organic Carbon

Mean Total Organic Carbon

4070847019 Result

MS Spike Conc.

11100

MS

Spike

9090

MSD Spike Conc.

12100

MSD Result Result

MS % Rec

MSD % Rec Limits % Rec

104

50-150

RPD RPD Qual 30

Project:

D DOCK

Pace Project No .:

4070988

QC Batch:

WETA/15346

Analysis Method:

EPA 9060 Modified

QC Batch Method:

EPA 9060 Modified

Analysis Description:

9060 TOC Average

Associated Lab Samples:

4070988005, 4070988006, 4070988007

METHOD BLANK: 719713

Matrix: Solid

Associated Lab Samples:

4070988005, 4070988006, 4070988007

Blank Result Reporting

Parameter

Units

Limit

Analyzed

Qualifiers

Mean Total Organic Carbon

mg/kg

ND

250 11/29/12 14:43

LABORATORY CONTROL SAMPLE:

Parameter

719714

LCS

LCS

% Rec

Units

Result

% Rec

Limits

Qualifiers

Mean Total Organic Carbon

mg/kg

Conc. 1000

Spike

1050

105

80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

719715

8690

MS

MSD

MS

719716

MSD

MSD MS

90

% Rec Limits

Max

RPD RPD Qual

Parameter Mean Total Organic Carbon

mg/kg

Units

4070988005 Result

Spike Spike Conc. Conc. 6600

Result 6560 14600

Result 17700 % Rec

% Rec 137

50-150

19

30

Pace Analytical Services, Inc. 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

QUALIFIERS

Project:

D DOCK

Pace Project No.:

4070988

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

BATCH QUALIFIERS

Batch: MSSV/5207

[IP] Benzo(b)fluoranthene and benzo(k)fluoranthene were in the check standard but did not meet the resolution criteria in

SW846 Method 8270C. Whereas sample results included are reported as individual isomers, the lab and the customer

must recognize them as an isomeric pair.

Batch: MSSV/5213

[IP] Benzo(b)fluoranthene and benzo(k)fluoranthene were in the check standard but did not meet the resolution criteria in

SW846 Method 8270C. Whereas sample results included are reported as individual isomers, the lab and the customer

REPORT OF LABORATORY ANALYSIS

without the written consent of Pace Analytical Services, Inc..

must recognize them as an isomeric pair.

Batch: WETA/15319

[WB] Results reported on dry weight basis per cited method.

Batch: WETA/15320

[WB] Results reported on dry weight basis per cited method.

Batch: WETA/15346

[WB] Results reported on dry weight basis per cited method.

Batch: WETA/15347

[WB] Results reported on dry weight basis per cited method.

ANALYTE QUALIFIERS

Date: 12/05/2012 04:21 PM

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

This report shall not be reproduced, except in full,

Pace Analytical Services, Inc. 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

QUALIFIERS

Project:

D DOCK

Pace Project No.:

4070988

ANALYTE QUALIFIERS

R1

RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: D DOCK Pace Project No.: 4070988

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
4070988001	S1 (23-29)	EPA 3541	OEXT/17037	EPA 8082	GCSV/8810
4070988002	S1 (29-31)	EPA 3541	OEXT/17037	EPA 8082	GCSV/8810
4070988003	S2 (29.5-31)	EPA 3541	OEXT/17037	EPA 8082	GCSV/8810
4070988004	S3 (23.5-28.5)	EPA 3541	OEXT/17037	EPA 8082	GCSV/8810
4070988005	S3 (28.5-30)	EPA 3541	OEXT/17037	EPA 8082	GCSV/8810
4070988006	S4 (21-26.5)	EPA 3541	OEXT/17037	EPA 8082	GCSV/8810
4070988007	S4 (26.5-30)	EPA 3541	OEXT/17037	EPA 8082	GCSV/8810
4070988001	S1 (23-29)	EPA 3050	MPRP/7841	EPA 6010	ICP/6873
4070988002	S1 (29-31)	EPA 3050	MPRP/7841	EPA 6010	ICP/6873
4070988003	S2 (29.5-31)	EPA 3050	MPRP/7841	EPA 6010	ICP/6873
4070988004	S3 (23.5-28.5)	EPA 3050	MPRP/7841	EPA 6010	ICP/6873
4070988005	S3 (28.5-30)	EPA 3050	MPRP/7841	EPA 6010	ICP/6873
4070988006	S4 (21-26.5)	EPA 3050	MPRP/7841	EPA 6010	ICP/6873
4070988007	S4 (26.5-30)	EPA 3050	MPRP/7854	EPA 6010	ICP/6886
4070988001	S1 (23-29)	EPA 7471	MERP/3407	EPA 7471	MERC/4089
4070988002	S1 (29-31)	EPA 7471	MERP/3407	EPA 7471	MERC/4089
4070988003	S2 (29.5-31)	EPA 7471	MERP/3407	EPA 7471	MERC/4089
1070988004	S3 (23.5-28.5)	EPA 7471	MERP/3407	EPA 7471	MERC/4089
1070988005	S3 (28.5-30)	EPA 7471	MERP/3407	EPA 7471	MERC/4089
1070988006	S4 (21-26.5)	EPA 7471	MERP/3407	EPA 7471	MERC/4089
4070988007	S4 (26.5-30)	EPA 7471	MERP/3407	EPA 7471	MERC/4089
1070988001	S1 (23-29)	EPA 3546	OEXT/17040	EPA 8270 by SIM	MSSV/5207
1070988002	S1 (29-31)	EPA 3546		EPA 8270 by SIM	MSSV/5213
1070988003	S2 (29.5-31)	EPA 3546		EPA 8270 by SIM	MSSV/5213
1070988004	S3 (23.5-28.5)	EPA 3546	OEXT/17054	EPA 8270 by SIM	MSSV/5213
1070988005	S3 (28.5-30)	EPA 3546	OEXT/17054	EPA 8270 by SIM	MSSV/5213
1070988006	S4 (21-26.5)	EPA 3546	OEXT/17054	EPA 8270 by SIM	MSSV/5213
1070988007	S4 (26.5-30)	EPA 3546	OEXT/17054	EPA 8270 by SIM	MSSV/5213
1070988001	S1 (23-29)	ASTM D2974-87	PMST/7982		
1070988002	S1 (29-31)	ASTM D2974-87	PMST/7982		
1070988003	S2 (29.5-31)	ASTM D2974-87	PMST/7982		
1070988004	S3 (23.5-28.5)	ASTM D2974-87	PMST/7982		
070988005	S3 (28.5-30)	ASTM D2974-87	PMST/7982		
070988006	S4 (21-26.5)	ASTM D2974-87	PMST/7982		
070988007	S4 (26.5-30)	ASTM D2974-87	PMST/7983		
070988001	S1 (23-29)	EPA 300.0	WETA/15297	EPA 300.0	WETA/1532
070988002	S1 (29-31)	EPA 300.0	WETA/15297	EPA 300.0	WETA/1532
070988003	S2 (29.5-31)	EPA 300.0	WETA/15297	EPA 300.0	WETA/1532
070988004	S3 (23.5-28.5)	EPA 300.0	WETA/15297	EPA 300.0	WETA/1532
070988005	S3 (28.5-30)	EPA 300.0	WETA/15297	EPA 300.0	WETA/1532
070988006	S4 (21-26.5)	EPA 300.0	WETA/15297	EPA 300.0	WETA/1532
070988007	S4 (26.5-30)	EPA 300.0	WETA/15297	EPA 300.0	WETA/1532
070988001	S1 (23-29)	EPA 350.1	WETA/15265	EPA 350.1	WETA/1533
070988002	S1 (29-31)	EPA 350.1	WETA/15265	EDA 350 1	WETA/1533

Date: 12/05/2012 04:21 PM

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: D DOCK Pace Project No.: 4070988

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
4070988003	S2 (29.5-31)	EPA 350.1	WETA/15265	EPA 350.1	WETA/15333
4070988004	S3 (23.5-28.5)	EPA 350.1	WETA/15265	EPA 350.1	WETA/15333
4070988005	S3 (28.5-30)	EPA 350.1	WETA/15265	EPA 350.1	WETA/15333
4070988006	S4 (21-26.5)	EPA 350.1	WETA/15265	EPA 350.1	WETA/15333
4070988007	S4 (26.5-30)	EPA 350.1	WETA/15265	EPA 350.1	WETA/15333
4070988001	S1 (23-29)	EPA 351.2	WETA/15405	EPA 351.2	WETA/15424
4070988002	S1 (29-31)	EPA 351.2	WETA/15405		WETA/15424
4070988003	S2 (29.5-31)	EPA 351.2	WETA/15405		WETA/15424
4070988004	S3 (23.5-28.5)	EPA 351.2	WETA/15405		WETA/15424
4070988005	S3 (28.5-30)	EPA 351.2	WETA/15405		WETA/15424
4070988006	S4 (21-26.5)	EPA 351.2	WETA/15405		WETA/15424
4070988007	S4 (26.5-30)	EPA 351.2	WETA/15405	EPA 351.2	WETA/15424
4070988001	S1 (23-29)	EPA 365.4	WETA/15337	EPA 365.4	WETA/15339
4070988002	S1 (29-31)	EPA 365.4	WETA/15337	EPA 365.4	WETA/15339
4070988003	S2 (29.5-31)	EPA 365.4	WETA/15337		WETA/15339
4070988004	S3 (23.5-28.5)	EPA 365.4	WETA/15337	EPA 365.4	WETA/15339
4070988005	S3 (28.5-30)	EPA 365.4	WETA/15375	EPA 365.4	WETA/15392
4070988006	S4 (21-26.5)	EPA 365.4	WETA/15375	EPA 365.4	WETA/15392
4070988007	S4 (26.5-30)	EPA 365.4	WETA/15375	EPA 365.4	WETA/15392
4070988001	S1 (23-29)	EPA 9060 Modified	WETA/15319		
4070988001	S1 (23-29)	EPA 9060 Modified	WETA/15320		
4070988002	S1 (29-31)	EPA 9060 Modified	WETA/15319		
4070988002	S1 (29-31)	EPA 9060 Modified	WETA/15320		
4070988003	S2 (29.5-31)	EPA 9060 Modified	WETA/15319		
4070988003	S2 (29.5-31)	EPA 9060 Modified	WETA/15320		
4070988004	S3 (23.5-28.5)	EPA 9060 Modified	WETA/15319		
4070988004	S3 (23.5-28.5)	EPA 9060 Modified	WETA/15320		
4070988005	S3 (28.5-30)	EPA 9060 Modified	WETA/15346		
4070988005	S3 (28.5-30)	EPA 9060 Modified	WETA/15347		
4070988006	S4 (21-26.5)	EPA 9060 Modified	WETA/15346		
4070988006	S4 (21-26.5)	EPA 9060 Modified	WETA/15347		
4070988007	S4 (26.5-30)	EPA 9060 Modified	WETA/15346		
4070988007	S4 (26.5-30)	EPA 9060 Modified	WETA/15347		

Face Analytical www.pacelabs.com

Company:

Address 9

sted Due Date/TAT:

Section A
Required Client Information:

のかんだったのの Brivan cerclin NN 55832 1000 Matrix Codes Section B
Required Project Information:
Report To: Project Name: 5 FBCK Purchase Order No.: Copy To: Project Number: CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section C Section C Pace Quote Reference: Pace Project Manager: Pace Profile #: Address: Company Name: Attention: Y/N Requested Analysis Filtered (Y/N) REGULATORY AGENCY TSU Site Location NPDES STATE: RCRA GROUND WATER 25 1504651 4070988 OTHER DRINKING WATER

					T			Τ	12	11	10	9	8	7	o	Un	4	ω	2		ITEM#		
птречант мове, ву этупту	* Innovative Propriet							ADDITIONAL COMMENTS						S4/26.5-3	54 (21-26	53 (28.5-	53 (23.5-	52 (29.5-	51 (29-3	51 (23-29	(A-Z, 0-91,-) Sample IDs MUST BE UNIQUE	O AMDI E ID	Section D Required Client Information
miposami, rouer, by agining that form you are accepting Pace's NET 30 day payment terms and agroeing to late charges of 1.5% July fig.		CRIGINAL	Opposition					MENTS						30) 007	5) sul	ľ.		31) @3	230	061	Wipe Air Tissue Other	Drinking Water DW Water WT Waste Water WW Product P Soil/Solid SL OII	Matrix Codes MATRIX 1. CODE
:T 30 d		Г	-			Z	1	煇	L					۴	3	ř	75	13	7.5	75	MATRIX CODE	(see valid codes	to left)
зу рауг						1	2	NOUIS	L	_				6	6	3	6	6	C	0	SAMPLE TYPE (G	G=GRAB C=CC	OMP)
nent terms an	-					John Committee of the C	T	RELINQUISHED BY AFFILIATION						€			_			11/20 17	DATE.	COMPOSITE START	
d agreeing to	S	P	SAMPLER			100	D	WEFIL MATIO												2	TIME	ਜ਼ੋ	COLLECTED
late charges o	SIGNATURE of SAMP	PRINT Name of SAMPLER	SAMPLER NAME AND SIGNATURE				5														DATE	COMPOSITE END/GRAB	TED
1.5%	of SAMP	of SAMPL	SIGNAT			1/20/12	130/1	DATE													TIME		
OF STATE OF	M	E.	SE	L	-	10	1	\vdash				_	_	(-)	. 3		3	j,	3	. 5	SAMPLE TEMP AT		
Kuy in	21	X				1530	2	TIME						3	S	2	5	7	3	3	# OF CONTAINER	lS	
finy inlaides not pelid within 30 days.	1	F				C.	235	m	_	_	_			7	75	×	7	X	<u>×</u>	X	Unpreserved H ₂ SO ₄		
Snot		2		Г	T	1	F														HNO₃		Pres
ad wi		2				N	1	1						_			_			Н	HCI NaOH		erva
hin 30	0	3	•			1	*	AC													Na ₂ S ₂ O ₃		Preservatives
days.		A 1				1.	1	CEPT					-						_		Methanol Other		
		F				1/	P	ACCEPTED BY / AFFILIATION		À			.35	- 20		- 6	. 7		į.	1;	Analysis Test	1	Y/N.
	⊋ ₽	3						V _z						X	X	X	X	X	X	×	PAHS		
	DATE Signed (MM/DD/YY):	1				1	9) E						X	X	X	×	X	X	X	LF META	445	
	ignec	- 1					F	NOL	_	-	_	\dashv	-	X	X	X	Ž	X	×	X	<u>PHOSPHOR</u> NITRATE -N		
	120	- 1				1		1		\dashv	\dashv		-	2	Z	7	X	$\stackrel{\frown}{\sim}$	N.	2	Ammunut N		
		- 1				1 to	E	_						X	X	×	X	X	X	X		DALL	
		- 1				wadra	pol	DATE		_		_	-	5	X	X	公	X	X	X	PCBs	3. A D.	
					-		2	-1	-	\dashv	-	\dashv	-	X	~	X		×	*	X	TOTAL ORG	CARBO	V
		-				153	235	TIME		7		\neg	7				\dashv	\exists	\neg	\dashv			
						L	3	1"															
F-A	Tem	np in °	С			6			_	_	_	+	4	_	_	_	_	_	_	\dashv	Davidson Oblavia	OVAL	
ρ			-	-	_	-			-	-	-	\dashv	\dashv	-		\dashv	-	-	\dashv		Residual Chlorine	(Y/N)	
020re		elved (Y/N)			-	6.	6.	SAI							-	\dashv	-	-	-	3-USIA	Pag		
v.07,	Cu	stody	\dashv	_	-	,		NPLE					-							8	e Pr		
16-N	Seale				_	*		CONI												X	<u>o</u> o o		
F-ALL-Q-020rev.07, 15-May-2007			\dashv			,		SAMPLE CONDITIONS													200		
007	Sampl	les Int Y/N)	act		-	K		NS		-											Pace Project No./ Lab I.D.		
			1				L													_			

Pace Analytical

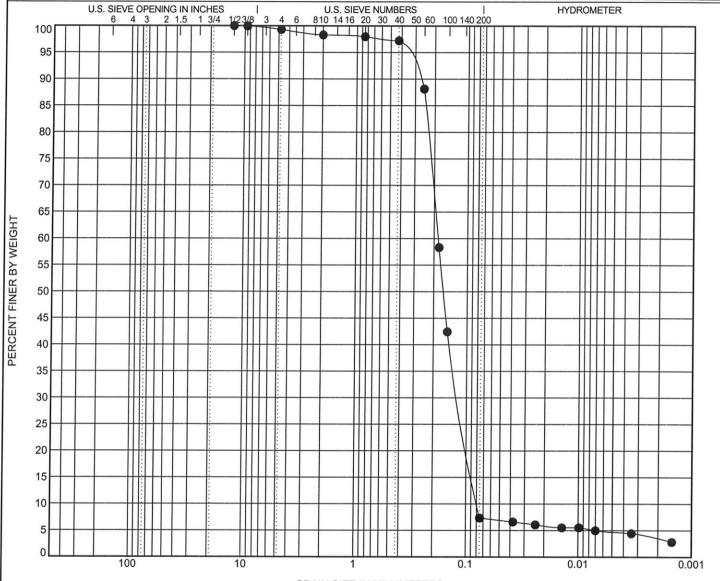
Sample Condition Upon Receipt

Client Name	: FOC	P	roject#	4070988
Courier: Fed Ex TUPS TUSPS TO				
Tracking #: 7941 2101 4136	Ollent 1 Oomine	Total 1! I doc Outo		
Custody Seal on Cooler/Box Present: Vyes	C no Seals	s intact: yes no	Optional:	
Custody Seal on Samples Present: Yes	1	sintact: Tyes Tho	ALL THE PARTY OF T	Date:
Packing Material: Bubble Wrap Bub	ble Bags No	ne Other	Proj. Name	
Thermometer Used SL - 36	Type of Ice: Wet	Blue Dry None	Samples on ice, cooling p	process has begun.
Cooler Temperature 2	Biological Tissue	is Frozen: yes		
Temp Blank Present: yes no		no no	Person examining control Date: 11-21-12	ents:
Temp should be above freezing to 6°C for all sample exc Biota Samples should be received \leq 0°C.	ept Biota.	Comments:	Initials:	
Chain of Custody Present:	ØYes □No □N/A	1.		
Chain of Custody Filled Out:	ZYes DNo DN/A	2.		
Chain of Custody Relinquished:	ZYes □No □N/A	3.		
Sampler Name & Signature on COC:	Yes DNo DNA	4.		
Samples Arrived within Hold Time:	Yes DNo DN/A	5.		
Short Hold Time Analysis (<72hr):	□Yes DNo □N/A	6.		
Rush Turn Around Time Requested:	□Yes ☑No □N/A	7.		
Sufficient Volume:	Øyes □No □N/A	8.		
Correct Containers Used:	ÆYes □No □N/A	9.		
-Pace Containers Used:	Ziyes DNo DN/A			
Containers Intact:	Yes No N/A	10.		
Filtered volume received for Dissolved tests	□Yes □No ☑N/A	11.	0 1 1 1 1 1 1	150110
Sample Labels match COC:		12. notine on	(OC or label	1.40
-Includes date/time/ID/Analysis Matrix:	13			112112
All containers needing preservation have been checked.	□Yes □No ☑N/A	13.		ļ.
All containers needing preservation are found to be in	☐Yes ☐No ☐N/A			
compliance with EPA recommendation.	,	Initial when	Lot # of added	***************************************
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes □No	completed	preservative	
Samples checked for dechlorination:	□Yes □No ☑N/A	14.		
Headspace in VOA Vials (>6mm):	□Yes □No □N/A	15.		
Trip Blank Present:	□Yes □No □N/A	16.		
Trip Blank Custody Seals Present	□Yes □No □N/A			
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution:	Data	Time:	Field Data Required?	Y / N
Person Contacted: Comments/ Resolution:	Date	Time.	•	
				,
	7		1.1.1	
Project Manager Review:	/		Date: //2	1/7.
Note: Whenever there is a discrepancy affecting North Carolina co	ompliance samples, a cop	by of this form will be sent to the N	North Carolina DEHNR Certifica	ation Office (i.e out of hold,
incorrect preservative, out of temp, incorrect containers)			('	

ATTACHMENT 4 PHYSICAL LABORATORY REPORTS

Geotechnical • Environmental • Materials Engineering

539 Garfield Avenue


Duluth, Minnesota 55802

CLIENT LHB Corporation

PROJECT NAME _D Dock

GRAIN SIZE DISTRIBUTION

PROJECT NUMBER 12E0764 PROJECT LOCATION Duluth, NN

GRAIN SIZE IN MILLIMETERS

COBBLES	GRA	AVEL		SAND)	SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAY

GPJ	Specimen Ider	ntification				Classification	on			LL	PL	PI	Сс	Cu
S.	Lab Sample	# 2429		РО	ORLY GRA	DED SAND v	vith SILT (SI	P-SM)					0.95	2.32
			D10	00	D60	D30	D10	%Gr	avel	%Sand		%Silt	%(Clay
12E0764 LHB D DOCK			12.	5	0.183	0.117	0.079	0.	7	92.0		2.6	4	.7
920	SIEVE	% PA	SS	S	SPEC	SIEVE	% PA	SS	SP	EC		NO	TES	
12E	3"					#10	98					posite		
S	2"					#16						, samp	le's 1,	2 & 3
M.	1.5"					#20	98				(23'	- 29')		
SPEC BANDS	1"					#30								
	3/4"					#40	97							
틹	5/8"					#50								
SIZE WITH	1/2"	100				#60	88							
SIZ	3/8"	100				#80	58							
GRAIN	#4	99				#100		42						
띪	#8					#200	7.3	7.3						

CK.GPJ GINT US LAB.GDT 11/28/12

GRAIN SIZE DISTRIBUTION EPC Engineering & Testing Geotechnical • Environmental • Materials Engineering 539 Garfield Avenue Duluth, Minnesota 55802 PROJECT NAME D Dock **CLIENT** LHB Corporation PROJECT NUMBER 12E0764 PROJECT LOCATION Duluth, NN U.S. SIEVE OPENING IN INCHES 6 4 3 2 1.5 1 3/4 U.S. SIEVE NUMBERS | 810 1416 20 30 40 50 60 100 140 200 HYDROMETER 3 123/8 100 95 90 85 80 75 70 65 PERCENT FINER BY WEIGHT 60 55 50 45 40 35 30 25 20 15 10 5 100 10 0.1 0.01 0.001 GRAIN SIZE IN MILLIMETERS **GRAVEL** SAND SILT OR CLAY **COBBLES** medium fine fine coarse coarse LL PL PΙ Cu Specimen Identification Classification Cc Lab Sample # 2426 POORLY GRADED SAND(SP) 1.41 2.20 D100 D60 D30 D10 %Gravel %Sand %Silt %Clay 0.224 0.102 2.5 94.9 12.5 0.179 2.5 % PASS SPEC **NOTES** SIEVE **SPEC** SIEVE % PASS Sample obtained from SB-1, sample #4 (29' -3" #10 96 #16 31'). 1.5" #20 95 #30 93 3/4" #40 5/8" #50 1/2" 100 #60 75

30

20

2.5

#80

#100

#200

GINT US LAB.GDT 11/28/12

GPJ

12E0764 LHB D DOCK.

GRAIN SIZE WITH SPEC BANDS

3/8"

#4

#8

98

97

GRAIN SIZE DISTRIBUTION EPC Engineering & Testing Geotechnical • Environmental • Materials Engineering 539 Garfield Avenue Duluth, Minnesota 55802 CLIENT LHB Corporation PROJECT NAME _D Dock PROJECT NUMBER 12E0764 PROJECT LOCATION Duluth, NN U.S. SIEVE OPENING IN INCHES U.S. SIEVE NUMBERS HYDROMETER 1/23/8 3 810 1416 20 30 40 50 60 100 140 200 2 1.5 100 95 90 85 80 75 70 65 PERCENT FINER BY WEIGHT 60 55 50 45 40 35 30 25 20 15 10 5 10 0.1 0.01 0.001 GRAIN SIZE IN MILLIMETERS **GRAVEL** SAND COBBLES SILT OR CLAY coarse fine coarse medium fine Specimen Identification Classification LL PL Ы Cc Cu Lab Sample # 2430 CLAY (CL-CH) and/or SILT (ML-MH) D100 D60 D30 D10 %Gravel %Sand %Silt %Clay 4.75 0.02 0.003 0.0 38.4 19.7 41.9 SIEVE % PASS SPEC SIEVE % PASS SPEC **NOTES** 3" #10 Sample obtained from SB-2, sample #1 (29.5) 100 #16 1.5" #20 98 1" #30 3/4" #40 96 5/8" #50 1/2" #60 95 3/8"

#80

#100

#200

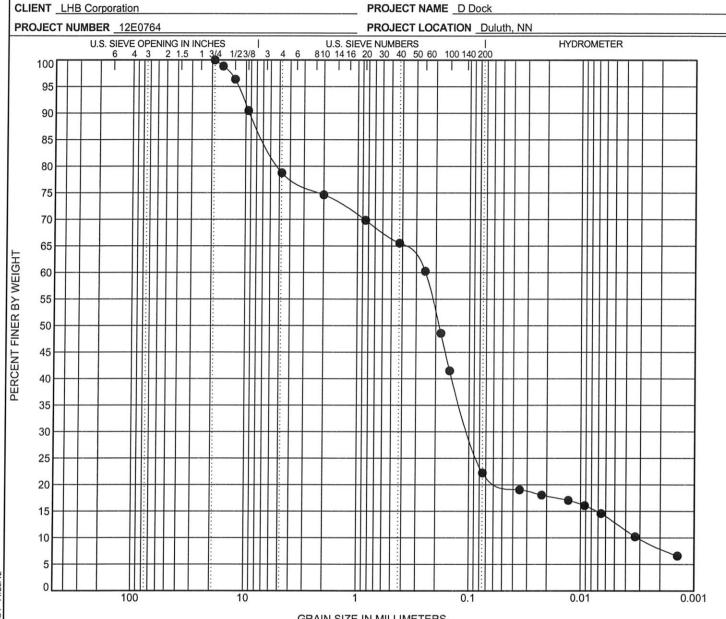
86

80

61.6

GINT US LAB.GDT 11/28/12

12E0764 LHB D DOCK,GPJ


#4

#8

100

Geotechnical • Environmental • Materials Engineering

539 Garfield Avenue Duluth, Minnesota 55802

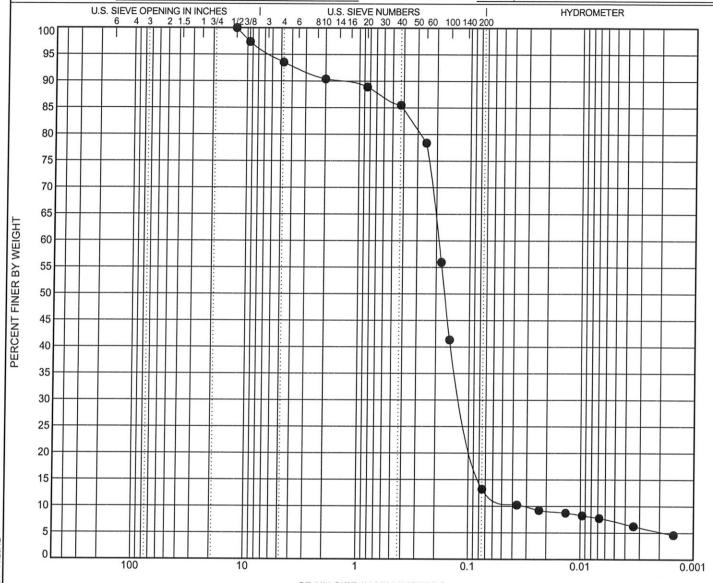
GRAIN SIZE DISTRIBUTION

CORRIES	GRA	VEL		SAND)	SULTOPICIAV
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAT

11/29/12	0															
			100		10		1			0.1			0.01		0.0	001
AB.GDT						GRA	AIN SIZE IN	MIL	LIMETERS	6						
US LA		COBE	RIES	GRA	AVEL		S	AND)			QII T	OR C	I AV]
GINT U		СОВ		coarse	fine	coarse	mediu	m	fin	е		SILT	ONC	LAT]
GPJ G	Specim	nen Iden	tification			CI	assification	on				LL	PL	PI	Сс	Cu
DOCK.	Lab	Sample	# 2431		SILT	Y SANI	with GF	RAVI	EL (SM)						12.65	79.25
BDD				D100	D60)	D30		D10	%Gra	avel	%Sand	1	%Silt	%(Clay
4 LH				19	0.24	8	0.099	(0.003	21	.2	56.5		9.4	1	2.8
2E0764	SIE		% PA	SS	SPEC		SIEVE		% PA	SS	SI	PEC			TES	
~ [3						#10	\perp	75				Com	posite	sample	e of
BANDS	2					_	#16	\perp	70				SB-3	samp	oles 1 8	2
BA	1.					_	#20	+	70				(23.5	5' - 28.5)	
SPEC	3/4		100	<u> </u>			#30 #40	+	66				+			
WITH	5/8		99				#50	\top	- 00				1			
\$	1/2		96				#60		60							
SIZE	3/8		90				#80		49							
SRAIN	#4		79				#100		42							
띪	#8	3					#200		22.3	3						

Geotechnical • Environmental • Materials Engineering

539 Garfield Avenue


Duluth, Minnesota 55802

CLIENT LHB Corporation

PROJECT NAME D Dock

GRAIN SIZE DISTRIBUTION

PROJECT NUMBER 12E0764 PROJECT LOCATION Duluth, NN

GRAIN SIZE IN MILLIMETERS

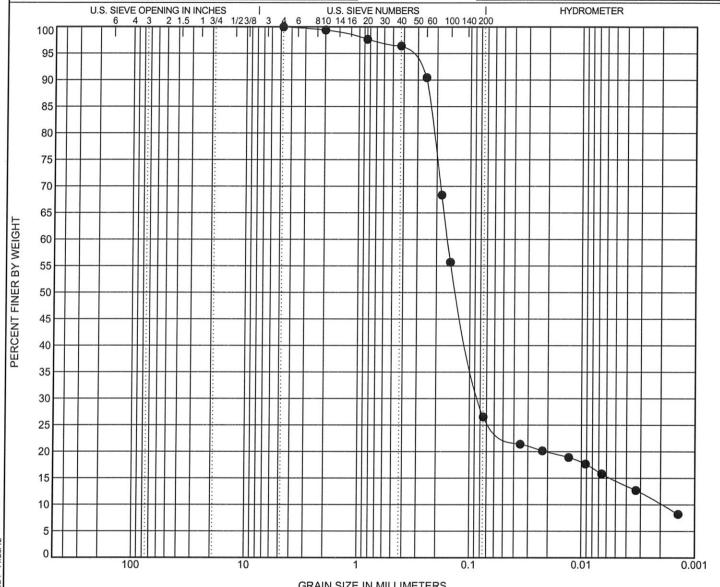
CORRIES	GRA	VEL		SAND)	SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAY

GPJ.	Specimen Ider	ntification				Classification	on			LL	PL	PI	Сс	Cu
S	Lab Sample	# 2427				SILTY SAND (SM)						2.06	5.84
12E0764 LHB D DOCK			D1	00	D60	D30	D10	%Gra	avel	%Sand	1	%Silt	1 %(Clay
4 H			12	.5	0.191	0.113	0.033	6.4	4	80.3		6.1	7	7.1
920	SIEVE	% PA	SS	,	SPEC	SIEVE	% PA	SS	SP	EC	T	NO	TES	
]5	3"					#10	90				Sam	ple obt		rom
S	2"					#16						3 , sam		
SPEC BANDS	1.5"					#20	89				- 30'			
	1"					#30								
딠	3/4"					#40	86							
틼	5/8"					#50								
<u>\$</u>	1/2"	100				#60	78							
S.	3/8"	97				#80	56							
GRAIN SIZE WITH	#4	94				#100	41							
8F	#8					#200	13.2							

DOCK.GPJ GINT US LAB.GDT 11/28/12

Geotechnical • Environmental • Materials Engineering

539 Garfield Avenue


Duluth, Minnesota 55802

CLIENT LHB Corporation

PROJECT NAME D Dock

GRAIN SIZE DISTRIBUTION

PROJECT NUMBER 12E0764 PROJECT LOCATION Duluth, NN

GRAIN SIZE IN MILLIMETERS

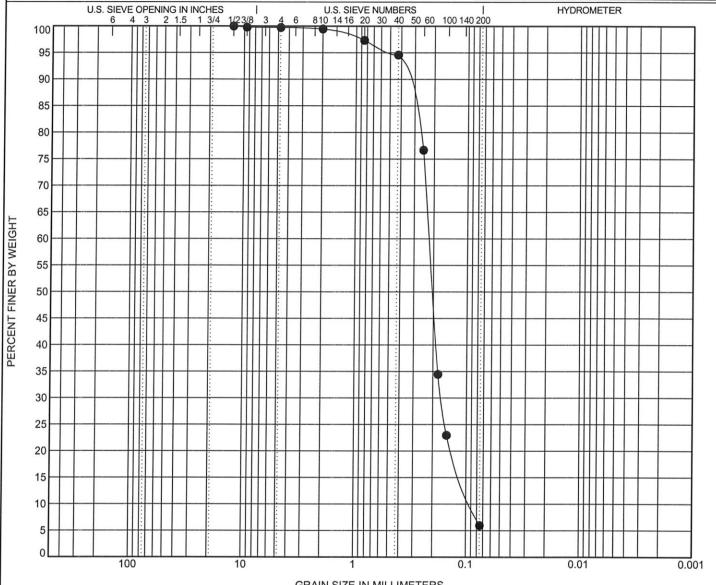
CORRIES	GRA	VEL		SAND)	SULTOBICLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAY

9														
GPJ	Specimen Ider	ntification				Classification	on			LL	PL	PI	Сс	Cu
OCK.	 Lab Sample 	# 2432				SILTY SAND ((SM)						21.13	81.19
3 D D			D10	00	D60	D30	D10	%0	Gravel	%Sand	1	%Silt	%(Clay
2E0764 LHB			4.7	5	0.16	0.081	0.002		0.0	73.4		12.0	1	4.6
920	SIEVE	% PA	SS	5	SPEC	SIEVE	% F	ASS	8	PEC			TES	
12E	3"					#10		9			Con	nposite	sample	e of
S	2"					#16					SB-	4, samp	oles 1, 2	2 & 3
BANDS	1.5"					#20	9	8			(21'	- 26.5)		
Ö	1"					#30					T			
SPEC	3/4"					#40	(6						
티	5/8"					#50								
≥	1/2"					#60	(0						
SIZE WITH	3/8"					#80	6	8						
GRAIN	#4	100				#100	5	6						
용	#8					#200	26	6.6						

GINT US LAB.GDT 11/28/12

Geotechnical • Environmental • Materials Engineering

539 Garfield Avenue


Duluth, Minnesota 55802

CLIENT LHB Corporation

PROJECT NAME D Dock

GRAIN SIZE DISTRIBUTION

PROJECT NUMBER _12E0764 PROJECT LOCATION _Duluth, NN

GRAIN SIZE IN MILLIMETERS

COBBLES	GRA	VEL		SAND)	SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAY

GP	Specimen Ider	ntification				Classification	on			LL	PL	PI	Сс	Cu
OCK.	Lab Sample			P	OORLY GR	RADED SAND	w/SILT (SP-	-SM)					1.45	2.48
300			D10	00	D60	D30	D10	%Gra	avel	%Sand	I	%Silt	%(Clay
12E0764 LHB D DOCK			12.	5	0.22	0.168	0.088	0.	2	93.8			6.0	
076	SIEVE	% PA	SS	S	PEC	SIEVE	% PA	SS	SP	EC	1	NO	TES	
12	3"					#10	99				Com	posite	sample	e of
8[2"					#16					SB-4	i, samp	les 4 8	. 5
SPEC BANDS	1.5"					#20	97				(26.5	5' - 30').		
	1"					#30					T			
	3/4"					#40	95							
티	5/8"					#50								
<u></u>	1/2"	100				#60	77							
SIZE WITH	3/8"	100				#80	34							
GRAIN	#4	100				#100	23							
윉	#8					#200	6.0							

GINT US LAB.GDT 11/28/12

Geotechnical • Environmental • Materials Engineering

539 Garfield Avenue Duluth, Minnesota 55802 (218) 727-1239 (218) 727-1248 fax

October 22, 2013 EPC # 13E0837

Mr. Joe Litman, P.E. LHB Corp. 21 West Superior St., Suite 500 Duluth, MN 55802

Re:

Additional Sediment Sampling (2013)

Proposed Dredging Project

Duluth Seaway Port Authority, D Dock

Duluth, Minnesota

Dear Mr. Litman,

EPC Engineering & Testing (EPC) was contracted to perform additional sediment sampling in an area proposed for dredging for the above-referenced facility. It is our understanding that the results of the sampling will be used to assist in obtaining a dredging permit and in determining the end use of the dredged material. The following summarizes the methods and results of the sediment sampling.

Methods

On September 30 and October 1, 2013, EPC performed four (4) sediment cores in the vicinity of the D Dock, including the slip and channel sides of the dock, in Duluth, Minnesota. The cores were accomplished using a split spoon sampler (3-inch diameter) using EPC's CME 55 truck mounted drill rig off a barge. The sample locations were selected in the areas proposed for dredging and are shown in Attachment 1 to this letter report. Sediment samples SB-13-07 and SB-13-08 (channel side) were completed to approximately 12.5 ft and 17.5 ft below the sediment line, respectively, to adequately get below the proposed dredge elevation 572. Sediment samples SB-13-05 and SB-13-06 (slip side) were completed to approximately 17.5 ft and 23.0 ft., respectively, below the sediment line to adequately get below the proposed dredge elevation 572.

Sediment samples were retrieved and logged in accordance with Minnesota Dregde guidelines. Copies of the core logs are included in Attachment 2. Laboratory analytical samples were selected from the sediment samples based on changes in material types or depth, and submitted under proper chain of custody procedures to Pace Analytical in Green Bay, Wisconsin. The Sediment Summary Table, included in Attachment 2, shows the analyses performed in each sediment core by sediment depth / layer. A total of eleven (11) composite samples were taken and eight (8) were analyzed for: MN Landfill metals, Phosphorus, Nitrate-Nitrite, Ammonia Nitrite, Total Kjedahl nitrogen, Total Organic Carbon, PCBs and PAHs/PNAs. In addition, 11 gradations (passing the #200 sieve) and eight (8) hydrometer sieve analyses were performed on the composite samples from the four sediment cores to determine the amount of fines present and to assist in classifying soils according to the ASTM.

Results

As mentioned above, logs depicting the graphical results of each sediment sample were developed and are included in Attachment 2, along with additional details on the sediment samples and their associated analyses. The samples generally consisted of Silty Sand soils.

Analytical laboratory results indicated the presence of low level RCRA metals in each of the samples tested. All detected heavy metal levels were below the MPCA Tier 1 Residential Soil Reference Values (SRV). No PCB compounds were detected in any of the samples tested. Each of the samples tested indicated the presence of several low level PAHs. All the detections were below the MPCA Tier 1 SRVs, except for the Benzo(a)pyrene Equivalent (BaP) in the sample from slip boring SB-13-05 (26-31ft). Analytical laboratory reports are included in Attachment 3.

Results of the Gradation and Hydrometer Sieve analyses were used to assist in classifying the following soil types in the four sediment cores: POORLY GRADED SAND with SILTY CLAY (SP-SC), POORLY GRADED SAND(SP), POORLY GRADED GRAVEL with SILTY CLAY GP-GC), SILTY SAND(SM), POORLY GRADED GRAVEL with SAND (GP), and SILTY CLAYEY SAND (SC-SM). Gradation and Hydrometer gradation reports are included in Attachment 4.

Conclusions

Results of the sediment samples taken in the project area generally indicated the presence of Silty Sandy soils. Only slip boring sample SB-13-05(26-31) detected a BaP equivalent that exceeds the MPCA Tier 1 SRV. None of the other PAHs or metals detected exceed the MPCA Tier 1 SRV. Hydrometer sieve analyses were performed to provide insight into the amounts of silt and clay in each of the main soil layers encountered. The following silt and clay percentages were determined for each of the respective identified soil types: POORLY GRADED SAND with SILTY CLAY (SP-SC)[19.9%], POORLY GRADED SAND(SP)[8.5%], POORLY GRADED GRAVEL with SILTY CLAY GP-GC))[11.2%], SILTY SAND(SM)[32.7-33.1%], POORLY GRADED GRAVEL with SAND (GP)[3.3%], and SILTY CLAYEY SAND (SC-SM)[12.5-15.0%].

If you have any questions, please contact me at (218) 727-1239.

Sincerelyz

EPC Engineering & Testing

Brjan E. McVean, P.E.

Enclosures: Attachment 1 – Sediment Core Sample Location Map

Attachment 2 - Core Sample Logs and Summary Table

Attachment 3 – Analytical Laboratory Reports Attachment 4 – Physical Laboratory Reports

ATTACHMENT 1 SEDIMENT CORE SAMPLE LOCATION MAP

21 W. Superior St., Sie. 500 | Duluth, MN 55802 | 218.727.8446

PERFORMANCE DRIVEN DESIGN. LHBcorp.com

Duluth Seaway Port Authority (DSPA)

1200 Port Terminal Drive Duluth, MN 55802 copyratent and a No. AL PIGHTS RESERVED.

NO DATE REVISION

PROJECT WANE C AND D DOCK IMPROVEMENTS

DRAWING TITLE SEDIMENT CORE LOCATIONS

EXHIBIT

POOK SHOCK SHOOK S
DDOCK 2000
8-2-9

ATTACHMENT 2 CORE SAMPLE LOGS AND SUMMARY TABLE

SEDIMENT SUMMARY TABLE

D Dock Duluth, Minnesota

October, 2013

Analyses		E G. H	E.G.H	E G.H		E.G. H	E, G, H	E.G.H	ဗ		E, G, H	Ŋ	*****	E G. H	G
ASTM Class.	B L	GP-GC	SM	SC-SM		GP	SP-SC	SM	SP		SC-SM	SP		SP-SC	SP
Water Column (ft) Begin Layer Depth / Thickness (ft) ASTM Class.	The state of the s	13.5 / 4.5	18.0 / 8.0	26.0 / 5.0	STI	7.5 / 5.0	12.5 / 5.0	17.5 / 5.0	24.0 / 6.5		19.0 / 2.5	21.5 / 10.0	Trust	14.5 / 2.5	17.0 / 15.0
Water Column (ft)	13.5				7.5					19.0			21.0		
Sediment Core	SB-13-05			L	SB-13-06					SB-13-07			SB-13-08		

ASTM Classifications =>

SP-SC = POORLY GRADED SAND with SILTY CLAY, SP = POORLY GRADED SAND, GP-GC = POORLY GRADED GRAVEL with SILTY CLAY, SM = SILTY SAND, GP = POORLY GRADED GRAVEL with SAND, SC-SM = SILTY CLAYEY SAND

Analyses Codes =>

E = MN LF metals, Phosphorus, Nitrate-Nitrite, Ammonia Nitrogen, TKN, PCBs, PAHs, TOC G = mechanical gradation % passing #200 sieve H = hydrometer gradation

Geo	otechr	ical •	eering & Testing Environmental • Materials Engineering				BORI	NG	NU	MBER SB-13-05 PAGE 1 OF 1			
		eld Av Iinneso	enue ota 55802										
CLIENT LHB				PROJECT NAME _D Dock									
PROJECT NUMBER 13M0937 DATE STARTED 10/1/13 COMPLETED 10/1/13													
	DRILLING CONTRACTOR EPC Engineering & Testing												
DRILLING METHOD CME 55 Truck Rig with HSA Cal. to N68													
			A CHECKED BY GH										
NOTES Station 11+25, 30 - feet off dock													
ELEVATION (ft)	O DEPTH	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PENETROMETER (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80			
595 595 585 580	10		POORLY GRADED GRAVEL (Brick) w/ SiLTY CI SAND and Organic Fines (GP-GC) Black to brown bearing. SILTY SAND (SM) with Organic Fines (SM) Brown wet, little gravel, trace clay. SILTY CLAYEY SAND with Organic Fines (SC-SN water bearing, trace gravel and clay.	n, water	SS 1 SS 2 SS 3 SS 4 SS 5 SS 6 SS 7	40 100 100 100 100				1.2			
570	30_		Bottom of hole at 31.0 feet.		SS 8	70				力: 15.0			
					<u></u>								

Ge-	otechn Garfie	ical • eld Av		BORING NUMBER SB-13-06 PAGE 1 OF 1										
Duluth, Minnesota 55802 CLIENT LHB					PROJECT NAME _D Dock									
			R _13M0937	PROJECT LOCATION St. Louis Bay										
DATE	STAR	TED _	9/30/13 COMPLETED 9/30/13											
DRILLING CONTRACTOR EPC Engineering & Testing														
DRILLING METHOD _CME 55 Truck Rig with HSA Cal. to N68					AT TIME OF DRILLING 0.0 ft / Elev 601.0 ft									
LOGGED BY BEM CHECKED BY GH														
NOTES Station 14+30, 30 - feet off dock					AFTER DRILLING									
ELEVATION (ft)	o DEPTH	☐ GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	POCKET PENETROMETER (tsf)	DRY UNIT WT.	A SPT N VALUE A 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80				
600	5		Water.							20 40 60 80				
590	10		POORLY GRADED GRAVEL (Brick) w/SAND (GP) to brown, water bearing, trace shells.		SS 1 SS 2	40				3.4				
585			POORLY GRADED SAND w/SILTY CLAY and Orga Fines (SP-SC) Black to brown, trace gravel.		ss 3 ss 4	100 50				VO.4				
580	20		SILTY SAND with Organic Fines (SM) Brown, water bearing, trace clay.		SS 5 SS 6 SS 7	100 100 100				33.1				
575			POORLY GRADED SAND (SP) Brown, fine grained bearing, trace organics.	, water	SS 8	100				7 2.5				
	30		Bottom of hole at 30.5 feet.		9									

GEOTECH BH PLOTS 13M0837 LHB D DOCK.GPJ GINT US LAB.GDT 10/17/13

EPC Engineering & Testing Geotechnical • Environmental • Materials Engineering 539 Garfield Avenue Duluth, Minnesota 55802					BORING NUMBER SB-13-07 PAGE 1 OF 1									
CLIENT LHB					PROJECT NAME _D Dock									
	PROJECT NUMBER 13M0937				PROJECT LOCATION St. Louis Bay									
DATE STARTED _10/1/13 COMPLETED _10/1/13														
DRILLING CONTRACTOR EPC Engineering & Testing														
DRILLING METHOD CME 55 Truck Rig with HSA Cal. to N68														
LOGGED BY BEM CHECKED BY GH														
NOTES 10-feet off dock.				AFTER DRILLING										
ELEVATION (ft)	OEPTH (ft)	GRAPHIC LOG LOG	MATERIAL DESCRIPTION		SAMPLE TYPE	NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PENETROMETER (tsf)	DRY UNIT WT. (pcf)	20 40 60 80 PL MC LL 20 40 60 80 PI MC LL 20 40 60 80 FINES CONTENT (%) 20 40 60 80			
595 596 590 585 587 577	10		SILTY CLAYEY SAND w/Organic Fines (SC-SM) Befine grained, trace to little shells, trace clay, water bearing, trace shells and gravet. Bottom of hole at 31.5 feet.	earing.	s:	3S 1 3S 2 SS 3 SS 4	100 100 100 100				12.4			
				•					j					

GEOTECH BH PLOTS 13M0837 LHB D DOCK.GPJ GINT US LAB.GDT 10/17/13

Geo	otechn	ical • I	eering & Testing Environmental • Materials Engineering	. =			BOR	ING	NU	JMBER SB-13-08 PAGE 1 OF 1			
		eld Av Iinneso	enue ta 55802										
CLIENT LHB					PROJECT NAME D Dock								
PROJECT NUMBER _13M0937													
DATE STARTED _10/1/13 COMPLETED _10/1/13					· · · · · · · · · · · · · · · · · · ·								
DRILLING CONTRACTOR EPC Engineering & Testing													
DRILLING METHOD CME 55 Truck Rig with HSA Cal. to N68					· · · · · · · · · · · · · · · · · · ·								
LOGGED BY BEM CHECKED BY GH					-								
NOTES 8-feet off dock wall.					AFTER DRILLING								
ELEVATION (ft)	O DEPTH	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	POCKET PENETROMETER (tst)	DRY UNIT WT.	A SPT N VALUE A 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80			
595	5		Water.										
585	15 		POORLY GRADED SAND w/SILTY CLAY and Orn Fines (SP-SC) Brown, fine to medium grained, wa bearing, trace gravel. POORLY GRADED SAND (SP) Brown, fine grained	ter	ss 1	100				19.5			
+	20		bearing.		SS 2	100							
580					SS 3	100	į						
+			Trace organics at 24-feet.		SS 4	100							
575	<u>25</u>				SS 5	100				2.7			
Ţ					SS 6	100							
570	30		Della-effect 100 0 f		ss 7	100							
			Bottom of hole at 32.0 feet.										

ATTACHMENT 3 ANALYTICAL LABORATORY REPORTS

October 17, 2013

Brian McVean ENGINEERING PARTNERS CO. 539 Garfield Avenue Duluth, MN 55802

RE: Project: D DOCK

Pace Project No.: 4086098

Dear Brian McVean:

Enclosed are the analytical results for sample(s) received by the laboratory on October 04, 2013. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Brian Basten for Steven Mleczko

steve.mleczko@pacelabs.com

Project Manager

Enclosures

Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project:

D DOCK

Pace Project No.:

4086098

Green Bay Certification IDs
1241 Bellevue Street, Green Bay, WI 54302
Florida/NELAP Certification #: E87948
Illinois Certification #: 200050
Kentucky Certification #: 82
Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334

New York Certification #: 11888 North Dakota Certification #: R-150 South Carolina Certification #: 83006001 US Dept of Agriculture #: S-76505 Wisconsin Certification #: 405132750

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

L

SAMPLE SUMMARY

Project:

D DOCK

Pace Project No.: 4086098

Lab ID	Sample ID	Matrix	Date Collected	Date Received
4086098001	SB-5-13 (13.5-18)	Solid	10/01/13 00:00	10/04/13 09:10
4086098002	\$B-5-13 (18-26)	Solid	10/01/13 00:00	10/04/13 09:10
4086098003	SB-5-13 (26-31)	Solid	10/01/13 00:00	10/04/13 09:10
4086098004	SB-6-13 (7-12.5)	Solid	09/30/13 00:00	10/04/13 09:10
4086098005	SB-6-13 (12.5-17.5)	Solid	09/30/13 00:00	10/04/13 09:10
4086098006	SB-6-13 (17.5-22.5)	Solid	09/30/13 00:00	10/04/13 09:10
4086098007	SB-6-13 (24-30.5)	Solid	09/30/13 00:00	10/04/13 09:10
4086098008	SB-7-13 (19-21.5)	Solid	10/02/13 00:00	10/04/13 09:10
4086098009	SB-7-13 (21.5-31.5)	Solid	10/02/13 00:00	10/04/13 09:10
4086098010	SB-8-13 (14.5-17)	Solid	10/02/13 00:00	10/04/13 09:10
4086098011	SB-8-13 (17-32)	Solid	10/02/13 00:00	10/04/13 09:10

SAMPLE ANALYTE COUNT

Project:

D DOCK

Pace Project No.:

4086098

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
4086098001	SB-5-13 (13.5-18)	EPA 8082	BDS	10	PASI-G
		EPA 6010	DLB	8	PASI-G
		EPA 7471	CMS	1	PASI-G
		EPA 8270 by SIM	ARO	18	PASI-G
		ASTM D2974-87	SKW	1	PASI-G
		EPA 300.0	JCJ	3	PASI-G
		EPA 350.1	НМВ	1	PASI-G
		EPA 351.2	НМВ	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
		EPA 9060 Modified	TJJ	4	PASI-G
086098002	SB-5-13 (18-26)	EPA 8082	BDS	10	PASI-G
		EPA 6010	DLB	8	PASI-G
		EPA 7471	CMS	1	PASI-G
		EPA 8270 by SIM	ARO	18	PASI-G
		ASTM D2974-87	SKW	1	PASI-G
		EPA 300.0	JCJ	3	PASI-G
		EPA 350.1	НМВ	1	PASI-G
		EPA 351.2	HMB	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
		EPA 9060 Modified	TJJ	4	PASI-G
086098003	SB-5-13 (26-31)	EPA 8082	BDS	10	PASI-G
		EPA 6010	DLB	8	PASI-G
		EPA 7471	CMS	1	PASI-G
		EPA 8270 by SIM	ARO	18	PASI-G
		ASTM D2974-87	SKW	1	PASI-G
		EPA 300.0	JC1	3	PASI-G
		EPA 350.1	НМВ	1	PASI-G
		EPA 351.2	НМВ	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
		EPA 9060 Modified	TJJ	4	PASI-G
86098004	SB-6-13 (7-12.5)	EPA 8082	BDS	10	PASI-G
		EPA 6010	DLB	8	PASI-G
		EPA 7471	CMS	1	PASI-G
		EPA 8270 by SIM	ARO	18	PASI-G
		ASTM D2974-87	skw	1	PASI-G
		EPA 300.0	JCJ	3	PASI-G
		EPA 350.1	HMB	1	PASI-G

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

SAMPLE ANALYTE COUNT

Project:

D DOCK

Pace Project No.:

4086098

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 351.2	НМВ	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
		EPA 9060 Modified	TJJ	4	PASI-G
4086098005	SB-6-13 (12.5-17.5)	EPA 8082	BDS	10	PASI-G
		EPA 6010	DLB	8	PASI-G
		EPA 7471	CMS	1	PASI-G
		EPA 8270 by SIM	ARO	18	PASI-G
		ASTM D2974-87	skw	1	PASI-G
		EPA 300.0	JCJ	3	PASI-G
		EPA 350.1	НМВ	1	PASI-G
		EPA 351.2	HMB	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
		EPA 9060 Modified	TJJ	4	PASI-G
4086098006	SB-6-13 (17.5-22.5)	EPA 8082	BDS	10	PASI-G
		EPA 6010	DLB	8	PASI-G
		EPA 7471	CMS	1	PASI-G
		EPA 8270 by SIM	ARO	18	PASI-G
		ASTM D2974-87	SKW	1	PASI-G
		EPA 300.0	JC1	3	PASI-G
		EPA 350.1	HMB	1	PASI-G
		EPA 351.2	HMB	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
		EPA 9060 Modified	TJJ	4	PASI-G
4086098007	SB-6-13 (24-30.5)	ASTM D2974-87	SKW	1	PASI-G
4086098008	SB-7-13 (19-21.5)	EPA 8082	BDS	10	PASI-G
		EPA 6010	DLB	8	PASI-G
		EPA 7471	CMS	1	PASI-G
		EPA 8270 by SIM	ARO	18	PASI-G
		ASTM D2974-87	skw	1	PASI-G
		EPA 300.0	JCJ	3	PASI-G
		EPA 350.1	HMB	1	PASI-G
		EPA 351.2	HMB	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
		EPA 9060 Modified	TJJ	4	PASI-G
1086098009	SB-7-13 (21.5-31.5)	ASTM D2974-87	SKW	1	PASI-G
1086098010	SB-8-13 (14.5-17)	EPA 8082	BDS	10	PASI-G
		EPA 6010	DLB	8	PASI-G

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ப

SAMPLE ANALYTE COUNT

Project:

D DOCK

Pace Project No.:

4086098

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 7471	CMS	1	PASI-G
		EPA 8270 by SIM	ARO	18	PASI-G
		ASTM D2974-87	skw	1	PASI-G
		EPA 300.0	JCJ	3	PASI-G
		EPA 350.1	HMB	1	PASI-G
		EPA 351.2	HMB	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
		EPA 9060 Modified	TJJ	4	PASI-G
4086098011	SB-8-13 (17-32)	ASTM D2974-87	SKW	1	PASI-G

ப

Project:

D DOCK

Pace Project No.:

Date: 10/17/2013 04:45 PM

4086098

Sample: SB-5-13 (13.5-18) Lab ID: 4086098001

Collected: 10/01/13 00:00 Received: 10/04/13 09:10 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qu
3082 GC\$ PCB	Analytical Meth	nod: EPA 808	2 Preparation Met	hod: EF	PA 3541			
CB-1016 (Aroclor 1016)	ND ug	/kg	70.7	1	10/08/13 11:25	10/09/13 17:35	12674-11-2	
PCB-1221 (Aroclor 1221)	ND ug	/kg	70.7	1	10/08/13 11:25	10/09/13 17:35	11104-28-2	
CB-1232 (Aroclor 1232)	ND ug	-	70.7	1	10/08/13 11:25	10/09/13 17:35	11141-16-5	
CB-1242 (Aroclor 1242)	ND ug		70.7	1	10/08/13 11:25	10/09/13 17:35	53469-21-9	
CB-1248 (Aroclor 1248)	ND ug	•	70.7	1		10/09/13 17:35		
CB-1254 (Aroclor 1254)	ND ug	_	70.7	1		10/09/13 17:35		
CB-1260 (Aroclor 1260)	ND ug/	_	70.7	1		10/09/13 17:35		
CB, Total	ND ug/	_	70.7	1		10/09/13 17:35		
Gurrogates				•				
etrachloro-m-xylene (S)	80 %		40-130	1	10/08/13 11:25	10/09/13 17:35	877-09-8	
ecachlorobiphenyl (S)	77 %		48-130	1		10/09/13 17:35		
010 MET ICP	Analytical Meth	od: EPA 601	O Preparation Meth	nod: EF	A 3050			
rsenic	7.2 mg	/kg	2.6	1	10/08/13 14:06	10/09/13 20:21	7440-38-2	
admium	0.84 mg	/ka	0.64	1		10/09/13 20:21		
hromium	16.9 mg	_	0.64	1		10/09/13 20:21		
opper	28.8 mg	_	1.3	1		10/09/13 20:21		
ead	92.4 mg		1.3	1		10/09/13 20:21		
ickel	15.2 mg		1.3	1		10/09/13 20:21		
elenium	ND mg	-	2.6	1		10/09/13 20:21		
inc	266 mg	-	5.2	1		10/09/13 20:21		
471 Mercury	_	_	Preparation Meth	nod: EP	A 7471			
lercury	0.093 mg.	/kg	0.0085	1	10/08/13 14:28	10/08/13 18:35	7439-97-6	
270 MSSV PAH by SIM	Analytical Meth	od: EPA 8270	by SIM Preparati	on Met	hod: EPA 3546			
cenaphthene	433 ug/	kg	188	8	10/12/13 12:00	10/16/13 12:48	83-32-9	
cenaphthylene	ND ug/	kg	188	8	10/12/13 12:00	10/16/13 12:48	208-96-8	
nthracene	535 ug/	kg	188	8	10/12/13 12:00	10/16/13 12:48	120-12-7	
enzo(a)anthracene	641 ug/l	-	188	8		10/16/13 12:48		
enzo(a)pyrene	692 ug/l	-	188	8	10/12/13 12:00	10/16/13 12:48	50-32-8	
enzo(b)fluoranthene	575 ug/l	-	188	8		10/16/13 12:48		1q
enzo(g,h,i)perylene	394 ug/l		188	8		10/16/13 12:48		. 4
enzo(k)fluoranthene	629 ug/l	-	188	8		10/16/13 12:48		1q
nrysene	789 ug/l	-	188	8		10/16/13 12:48		. 1
benz(a,h)anthracene	ND ug/l	-	188	8		10/16/13 12:48		
uoranthene	1610 ug/	-	188	8		10/16/13 12:48		
uorene	313 ug/l		188	8		10/16/13 12:48		
deno(1,2,3-cd)pyrene	339 ug/l		188	8		10/16/13 12:48		
aphthalene	256 ug/l	•	188	8		10/16/13 12:48		
enanthrene	1780 ug/l		188	8		10/16/13 12:48		
renammene rene	1320 ug/l	-	188	8		10/16/13 12:48		
rene irrogates	iszu ugn	9	100	u	10/12/13 12:00	10/10/13 12.48	128-00-0	
Fluorobiphenyl (S)	73 %		40-130	8	10/12/13 12:00	10/16/13 12:48	321-60-8	
rphenyl-d14 (S)	69 %		40-130	8		10/16/13 12:48		

REPORT OF LABORATORY ANALYSIS

نے

Project:

D DOCK

Pace Project No.: 4086098

Sample: SB-5-13 (13.5-18)

Date: 10/17/2013 04:45 PM

Lab ID: 4086098001

Collected: 10/01/13 00:00 Received: 10/04/13 09:10 Matrix: Solid

Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Met	thod: ASTM D	2974-87					
Percent Moisture	29.2 %	, ,	0.10	1		10/14/13 16:18		
300.0 IC Anions	Analytical Met	thod: EPA 300	.0 Preparation Met	hod: El	PA 300.0			
Nitrate as N	ND m	g/kg	21.3	5	10/07/13 14:22	10/08/13 20:57	14797 - 55-8	D3
Nitrite as N	ND m	g/kg	14.2	5	10/07/13 14:22	10/08/13 20:57	14797-65-0	D3
Nitrogen, NO2 plus NO3	ND m	g/kg	21.3	5	10/07/13 14:22	10/08/13 20:57		
350.1 Ammonia	Analytical Met	hod: EPA 350.	.1 Preparation Met	hod: El	PA 350.1			
Nitrogen, Ammonia	46.5 m	g/kg	18.4	1	10/11/13 18:50	10/11/13 20:30	7664-41-7	
351.2 Total Kjeldahl Nitrogen	Analytical Met	hod: EPA 351.	2 Preparation Met	hod: El	PA 351.2			
Nitrogen, Kjeldahl, Total	702 m	g/kg	118	1	10/07/13 15:05	10/07/13 22:25	7727-37-9	
365.4 Total Phosphorus	Analytical Met	hod: EPA 365.	4 Preparation Met	hod: El	PA 365.4			
Phosphorus	412 m	g/kg	33.2	1	10/17/13 09:00	10/17/13 12:24	7723-14-0	
Total Organic Carbon	Analytical Met	hod: EPA 9060	O Modified					
Surrogates								
RPD%	31.6 %			1		10/11/13 09:01		
Total Organic Carbon	1420 0 m		1210	1		10/11/13 08:54		
Total Organic Carbon	19500 m		1220	1		10/11/13 09:01	7440-44-0	
Mean Total Organic Carbon	16900 m	g/kg	1220	1		10/11/13 09:01	7440-44-0	

Project:

D DOCK

Pace Project No.:

4086098

Sample: SB-5-13 (18-26)

Lab ID: 4086098002

Collected: 10/01/13 00:00 Received: 10/04/13 09:10 Matrix: Solid

Terphenyl-d14 (S)

Date: 10/17/2013 04:45 PM

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical Meth	nod: EPA 808	2 Preparation Met	hod: El	PA 3541			
PCB-1016 (Aroclor 1016)	ND ug	/kg	62.8	1	10/08/13 11:25	10/09/13 17:53	12674-11-2	
PCB-1221 (Aroclor 1221)	ND ug	/kg	62.8	1	10/08/13 11:25	10/09/13 17:53	11104-28-2	
PCB-1232 (Aroclor 1232)	ND ug	/kg	62.8	1	10/08/13 11:25	10/09/13 17:53	11141-16-5	
PCB-1242 (Aroclor 1242)	ND ug	/kg	62.8	1	10/08/13 11:25	10/09/13 17:53	53469-21-9	
PCB-1248 (Aroclor 1248)	ND ug	/kg	62.8	1	10/08/13 11:25	10/09/13 17:53	12672-29-6	
PCB-1254 (Aroclor 1254)	ND ug	/kg	62.8	1	10/08/13 11:25	10/09/13 17:53	11097-69-1	
PCB-1260 (Aroclor 1260)	ND ug	/kg	62.8	1	10/08/13 11:25	10/09/13 17:53	11096-82-5	
PCB, Total	ND ug.	/kg	62.8	1	10/08/13 11:25	10/09/13 17:53	1336-36-3	
Surrogates	_	_						
Tetrachloro-m-xylene (S)	70 %		40-130	1	10/08/13 11:25	10/09/13 17:53	877-09-8	
Decachlorobiphenyl (S)	71 %		48-130	1	10/08/13 11:25	10/09/13 17:53	2051-24-3	
6010 MET ICP	Analytical Meth	od: EPA 6010	Preparation Meth	nod: EF	PA 3050			
Arsenic	ND mg	/kg	2.5	1	10/08/13 14:06	10/09/13 20:24	7440-38-2	
Cadmium	ND mg	/kg	0.62	1	10/08/13 14:06	10/09/13 20:24	7440-43-9	
Chromium	11.6 mg	/kg	0.62	1	10/08/13 14:06	10/09/13 20:24	7440-47-3	
Copper	11.3 mg	/kg	1.2	1	10/08/13 14:06	10/09/13 20:24	7440-50-8	
Lead	14.3 mg	/kg	1.2	1	10/08/13 14:06	10/09/13 20:24	7439-92-1	
Nickel	9.6 mg	/kg	1.2	1	10/08/13 14:06	10/09/13 20:24	7440-02-0	
Selenium	ND mg	/kg	2.5	1	10/08/13 14:06	10/09/13 20:24	7782-49-2	
Zinc	39.0 mg	/kg	5.0	1	10/08/13 14:06	10/09/13 20:24	7440-66-6	
7471 Mercury	Analytical Meth	od: EPA 7471	Preparation Meth	nod: EP	PA 7471			
Mercury	0.047 mg	/kg	0.0073	1	10/08/13 14:28	10/08/13 18:37	7439-97-6	
8270 MSSV PAH by SIM	Analytical Meth	od: EPA 8270	by SIM Preparati	on Met	hod: EPA 3546			
Acenaphthene	357 ug/	kg	209	10	10/12/13 12:00	10/16/13 17:28	83-32-9	
Acenaphthylene	ND ug/	kg	209	10	10/12/13 12:00	10/16/13 17:28	208-96-8	
Anthracene	630 ug/	kg	209	10	10/12/13 12:00	10/16/13 17:28	120-12-7	
Benzo(a)anthracene	723 ug/	kg	209	10	10/12/13 12:00	10/16/13 17:28	56-55-3	
Benzo(a)pyrene	884 ug/	kg	209	10	10/12/13 12:00	10/16/13 17:28	50-32-8	
Benzo(b)fluoranthene	648 ug/	kg	209	10	10/12/13 12:00	10/16/13 17:28	205-99-2	1q
Benzo(g,h,i)perylene	538 ug/	kg	209	10	10/12/13 12:00	10/16/13 17:28	191-24-2	
Benzo(k)fluoranthene	705 ug/l	kg	209	10	10/12/13 12:00	10/16/13 17:28	207-08-9	1q
Chrysene	810 ug/	kg	209	10	10/12/13 12:00	10/16/13 17:28	218-01-9	
Dibenz(a,h)anthracene	ND ug/	kg	209	10	10/12/13 12:00	10/16/13 17:28	53-70-3	
luoranthene	1970 ug/l	kg	209	10	10/12/13 12:00	10/16/13 17:28	206-44-0	
luorene	370 ug/l	kg	209	10	10/12/13 12:00	10/16/13 17:28	86-73-7	
ndeno(1,2,3-cd)pyrene	435 ug/l	kg	209	10	10/12/13 12:00	10/16/13 17:28	193-39-5	
laphthalene	411 ug/l	кg	209	10	10/12/13 12:00	10/16/13 17:28	91-20-3	
henanthrene	2500 ug/l	кg	209	10	10/12/13 12:00	10/16/13 17:28	85-01-8	
yrene	1800 ug/l	κġ	209	10	10/12/13 12:00	10/16/13 17:28	129-00-0	
Gurrogates		-						
-Fluorobiphenyl (S)	73 %		40-130	10	10/12/13 12:00	10/16/13 17:28	321-60-8	

REPORT OF LABORATORY ANALYSIS

40-130

10

10/12/13 12:00 10/16/13 17:28 1718-51-0

63 %

E

Project:

D DOCK

Pace Project No.: 4086098

Sample: SB-5-13 (18-26)

Date: 10/17/2013 04:45 PM

Lab ID: 4086098002

Collected: 10/01/13 00:00 Received: 10/04/13 09:10 Matrix: Solid

Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Met	thod: ASTM D	2974-87					
Percent Moisture	20.3 %	i	0.10	1		10/14/13 16:18		
300.0 IC Anions	Analytical Met	ihod: EPA 300.	.0 Preparation Met	hod: E	PA 300.0			
Nitrate as N	ND m	ıg/kg	3.8	1	10/07/13 14:22	10/08/13 21:22	14797-55-8	
Nitrite as N	ND m	ıg/kg	2.6	1	10/07/13 14:22	10/08/13 21:22	14797-65-0	
Nitrogen, NO2 plus NO3	ND m	g/kg	3.8	1	10/07/13 14:22	10/08/13 21:22		
350.1 Ammonia	Analytical Met	hod: EPA 350.	1 Preparation Met	hod: El	PA 350.1			
Nitrogen, Ammonia	53.3 m	g/kg	16.4	1	10/11/13 18:50	10/11/13 20:31	7664-41-7	
351.2 Total Kjeldahl Nitrogen	Analytical Met	hod: EPA 351.	2 Preparation Met	hod: El	PA 351.2			
Nitrogen, Kjeldahl, Total	329 m	g/kg	71.7	1	10/07/13 15:05	10/07/13 22:26	7727-37-9	
365.4 Total Phosphorus	Analytical Met	hod: EPA 365.	4 Preparation Met	hod: Ei	PA 365.4			
Phosphorus	351 mg	g/kg	52.9	1	10/17/13 09:00	10/17/13 12:24	7723-14-0	
Total Organic Carbon	Analytical Met	hod: EPA 9060) Modified					
Surrogates								
RPD%	3.1 %			1		10/11/13 09:14		
Total Organic Carbon	9640 mg	g/kg	1490	1		10/11/13 09:07	7440-44-0	
Total Organic Carbon	9940 mg	g/kg	1480	1		10/11/13 09:14	7440-44-0	
Mean Total Organic Carbon	9 790 mg	g/kg	1480	1		10/11/13 09:14	7440-44-0	

ت

Project:

DDOCK

Pace Project No.:

Date: 10/17/2013 04:45 PM

4086098

Sample: SB-5-13 (26-31)

Lab ID: 4086098003

Collected: 10/01/13 00:00 Received: 10/04/13 09:10 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
1082 GCS PCB	Analytical Metho	od: EPA 808	2 Preparation Met	hod: EF	A 3541			
PCB-1016 (Aroclor 1016)	ND ug/l	κg	64.7	1	10/08/13 11:25	10/09/13 18:11	12674-11-2	
PCB-1221 (Aroclor 1221)	ND ug/l	œ	64.7	1	10/08/13 11:25	10/09/13 18:11	11104-28-2	
CB-1232 (Aroclor 1232)	ND ug/k	(g	64.7	1	10/08/13 11:25	10/09/13 18:11	11141-16-5	
CB-1242 (Aroclor 1242)	ND ug/k	κg	64.7	1	10/08/13 11:25	10/09/13 18:11	53469-21-9	
CB-1248 (Aroclor 1248)	ND ug/k	ιg	64.7	1	10/08/13 11:25	10/09/13 18:11	12672-29-6	
CB-1254 (Aroclor 1254)	ND ug/k	κg	64.7	1	10/08/13 11:25	10/09/13 18:11	11097-69-1	
CB-1260 (Aroclor 1260)	ND ug/k		64.7	1	10/08/13 11:25	10/09/13 18:11	11096-82-5	
CB, Total	ND ug/k		64.7	1	10/08/13 11:25	10/09/13 18:11	1336-36-3	
urrogates	ŭ	•						
etrachloro-m-xylene (S)	78 %		40-130	1	10/08/13 11:25	10/09/13 18:11	877-09-8	
ecachlorobiphenyl (S)	79 %		48-130	1	10/08/13 11:25	10/09/13 18:11	2051-24-3	
010 MET ICP	Analytical Metho	od: EPA 601	0 Preparation Meth	nod: EP	A 3050			
rsenic	ND mg/l	kg	2.2	1	10/08/13 14:06	10/09/13 20:26	7440-38-2	
admium	ND mg/l	kg	0.56	1	10/08/13 14:06	10/09/13 20:26	7440-43-9	
hromium	8.3 mg/l	-	0.56	1	10/08/13 14:06	10/09/13 20:26	7440-47-3	
opper	9.3 mg/l	_	1.1	1	10/08/13 14:06	10/09/13 20:26	7440-50-8	
ead	9.9 mg/l	ka	1.1	1	10/08/13 14:06	10/09/13 20:26	7439-92-1	
ickel	6.0 mg/i		1,1	1		10/09/13 20:26		
elenium	ND mg/l		2.2	1		10/09/13 20:26		
nc	28.2 mg/l		4.5	1		10/09/13 20:26		
171 Mercury	Analytical Metho	d: EPA 747	1 Preparation Meth	iod: EP	A 7471			
ercury	0.040 mg/l	kg	0.0069	1	10/08/13 14:28	10/08/13 18:40	7439-97-6	
270 MSSV PAH by SIM	Analytical Metho	d: EPA 8270	by SIM Preparati	on Metl	hod: EPA 3546			
cenaphthene	823 ug/k	g	431	20	10/12/13 12:00	10/15/13 18:39	83-32-9	
cenaphthylene	ND ug/k	g	431	20	10/12/13 12:00	10/15/13 18:39	208-96-8	
nthracene	2210 ug/k	g	431	20	10/12/13 12:00	10/15/13 18:39	120-12-7	
enzo(a)anthracene	1870 ug/k	g	431	20	10/12/13 12:00	10/15/13 18:39	56-55-3	
enzo(a)pyrene	1740 ug/k	g	431	20	10/12/13 12:00	10/15/13 18:39	50-32-8	
enzo(b)fluoranthene	1320 ug/k	g	431	20	10/12/13 12:00	10/15/13 18:39	205-99-2	1q
enzo(g,h,i)perylene	816 ug/k	•	431	20	10/12/13 12:00	10/15/13 18:39	191-24-2	-
enzo(k)fluoranthene	1410 ug/k		431	20	10/12/13 12:00	10/15/13 18:39	207-08-9	1q
nrysene	1940 ug/kg	•	431	20		10/15/13 18:39		•
benz(a,h)anthracene	ND ug/k	-	431	20		10/15/13 18:39		
uoranthene	4740 ug/k		431	20		10/15/13 18:39		
uorene	1160 ug/k		431	20		10/15/13 18:39		
deno(1,2,3-cd)pyrene	712 ug/k		431	20		10/15/13 18:39		
aphthalene	1100 ug/k	•	431	20		10/15/13 18:39		
nenanthrene	6150 ug/k	_	431	20		10/15/13 18:39		
rene	3880 ug/k	_	431	20		10/15/13 18:39		
rene Irrogates	Sour dy/ki	ਰ	40 I	2.0	10) 12/10 12:00	10/10/10 10:05	120-00-0	
Fluorobiphenyl (S)	63 %		40-130	20	10/12/13 12-00	10/15/13 18:39	321-60-8	
rphenyl-d14 (S)	58 %		40-130	20	10/12/13 12:00			

Project:

D DOCK

Pace Project No.: 4086098

Date: 10/17/2013 04:45 PM

Sample: SB-5-13 (26-31)

Lab ID: 4086098003

Collected: 10/01/13 00:00 Received: 10/04/13 09:10 Matrix: Solid

Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Met	hod: ASTM D	2974-87					
Percent Moisture	22.7 %)	0.10	1		10/14/13 16:18		
300.0 IC Anions	Analytical Met	hod: EPA 300	.0 Preparation Met	hod: El	PA 300.0			
Nitrate as N Nitrite as N Nitrogen, NO2 plus NO3	ND m ND m ND m	g/kg	3.9 2.6 3.9	1 1 1	10/07/13 14:22 10/07/13 14:22 10/07/13 14:22		14797-55-8 14797-65-0	
350.1 Ammonia	Analytical Met	hod: EPA 350	.1 Preparation Met	hod: El	PA 350.1			
Nitrogen, Ammonia	46.3 m	g/kg	16.9	1	10/11/13 18:50	10/11/13 20:34	7664-41-7	
351.2 Total Kjeldahl Nitrogen	Analytical Met	hod: EPA 351	.2 Preparation Met	hod: El	PA 351.2			
Nitrogen, Kjeldahl, Total	536 m	g/kg	61.6	1	10/07/13 15:05	10/07/13 22:27	7727-37-9	
365.4 Total Phosphorus	Analytical Met	hod: EPA 365.	.4 Preparation Met	hod: El	PA 365.4			
Phosphorus	269 m	g/kg	24.6	1	10/17/13 09:00	10/17/13 12:25	7723-14-0	
Total Organic Carbon	Analytical Met	hod: EPA 906	0 Modified					
Surrogates RPD% Total Organic Carbon Total Organic Carbon	8.9 % 16300 m 14900 m	g/kg	1170 1180	1 1		10/11/13 09:54 10/11/13 09:47 10/11/13 09:54	7440-44-0	
Mean Total Organic Carbon	15600 mg		1170	1		10/11/13 09:54		

Project:

Date: 10/17/2013 04:45 PM

D DOCK

Pace Project No.: 4086098 Sample: SB-6-13 (7-12.5)

Lab ID: 4086098004

Collected: 09/30/13 00:00 Received: 10/04/13 09:10 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
082 GCS PCB	Analytical Meth	nod: EPA 808	2 Preparation Met	hod: EF	PA 3541		-1	
PCB-1016 (Aroclor 1016)	ND ug	/kg	65.7	1	10/08/13 11:25	10/09/13 18:29	12674-11-2	
CB-1221 (Aroclor 1221)	ND ug		65.7	1	10/08/13 11:25	10/09/13 18:29	11104-28-2	
CB-1232 (Aroclor 1232)	ND ug	/kg	65.7	1	10/08/13 11:25	10/09/13 18:29	11141-16-5	
PCB-1242 (Aroclor 1242)	ND ug	-	65.7	1	10/08/13 11:25	10/09/13 18:29	53469-21-9	
PCB-1248 (Araclor 1248)	ND ug	_	65.7	1		10/09/13 18:29		
CB-1254 (Aroclor 1254)	ND ug.	•	65.7	1		10/09/13 18:29		
CB-1260 (Aroclor 1260)	ND ug		65.7	1		10/09/13 18:29		
CB, Total	ND ug	_	65.7	1		10/09/13 18:29		
Surrogates				•	70.00.10	,,		
etrachloro-m-xylene (S)	73 %		40-130	1	10/08/13 11:25	10/09/13 18:29	877-09-8	
ecachlorobiphenyl (S)	73 %		48-130	1		10/09/13 18:29		
D10 MET ICP	Analytical Meth	od: EPA 601	0 Preparation Meth	nod: EP	A 3050			
rsenic	3.2 mg	ı/kg	2.6	1	10/08/13 14:06	10/09/13 20:28	7440-38-2	
admium	ND mg		0.65	1	10/08/13 14:06	10/09/13 20:28	7440-43-9	
hromium	43.8 mg	/kg	0.65	1		10/09/13 20:28		
opper	17.7 mg	_	1.3	1	10/08/13 14:06	10/09/13 20:28	7440-50-8	
ead	34.0 mg	_	1.3	1	10/08/13 14:06	10/09/13 20:28	7439-92-1	
ickel	19.5 mg	-	1.3	1		10/09/13 20:28		
elenium	ND mg	_	2.6	1		10/09/13 20:28		
nc	51.3 mg	_	5.2	1		10/09/13 20:28		
471 Mercury	Analytical Meth	od: EPA 747	1 Preparation Meth	od: EP	A 7471			
lercury	0.31 mg	/kg	0.0076	1	10/08/13 14:28	10/08/13 18:42	7439-97-6	
270 MSSV PAH by SIM	Analytical Meth	od: EPA 8270	by SIM Preparati	on Meth	nod: EPA 3546			
cenaphthene	1810 ug/	kg	175	4	10/11/13 20:31	10/16/13 05:56	83-32-9	
cenaphthylene	ND ug/		175	4		10/16/13 05:56		
nthracene	878 ug/		175	4		10/16/13 05:56		
enzo(a)anthracene	613 ug/		175	4		10/16/13 05:56		
enzo(a)pyrene	590 ug/	-	175	4		10/16/13 05:56		
enzo(b)fluoranthene	506 ug/	_	175	4		10/16/13 05:56		1q
nzo(g,h,i)perylene	ND ug/	_	175	4		10/16/13 05:56		.4
nzo(k)fluoranthene	461 ug/	•	175	4		10/16/13 05:56		1q
nrysene	644 ug/	•	175	4		10/16/13 05:56		. 4
benz(a,h)anthracene	ND ug/	-	175	4		10/16/13 05:56		
Joranthene	1350 ug/l		175	4		10/16/13 05:56		
Jorene	673 ug/l		175	4		10/16/13 05:56		
deno(1,2,3-cd)pyrene	ND ug/l		175	4		10/16/13 05:56		
aphthalene	1930 ug/l	-	175	4		10/16/13 05:56		
iprimarene ienanfarene	_	-	175 175			10/16/13 05:56		
	2500 ug/l			4				
rene	1510 ug/l	ĸg	175	4	10/11/13 20:31	10/16/13 05:56	IZ 9 -00-0	
rrogates Fluorobiphenyl (S)	92 %		40-130	4	10/11/13 20:31	10/16/12 05:56	221_60 P	

REPORT OF LABORATORY ANALYSIS

ட

Project:

D DOCK

Pace Project No.:

Date: 10/17/2013 04:45 PM

4086098

Sample: SB-6-13 (7-12.5)

Lab ID: 4086098004

Collected: 09/30/13 00:00 Received: 10/04/13 09:10 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Met	hod: ASTM D	2974-87					
Percent Moisture	23.9 %		0.10	1		10/14/13 16:18		
300.0 IC Anions	Analytical Met	hod: EPA 300	.0 Preparation Met	hod: El	PA 300.0			
Nitrate as N	ND m	g/kg	4.0	1	10/07/13 14:22	10/08/13 21:55	14797-55-8	
Nitrite as N	ND m	g/kg	2.6	1	10/07/13 14:22	10/08/13 21:55	14797-65-0	
Nitrogen, NO2 plus NO3	ND m	g/kg	4.0	1	10/07/13 14:22	10/08/13 21:55		
350.1 Ammonia	Analytical Met	nod: EPA 350.	.1 Preparation Met	hod: El	PA 350.1			
Nitrogen, Ammonia	29.7 mg	g/kg	14.6	1	10/11/13 18:50	10/11/13 20:35	7664-41-7	
351.2 Total Kjeldahl Nitrogen	Analytical Meth	nod: EPA 351.	2 Preparation Met	hod: El	PA 351.2			
Nitrogen, Kjeldahl, Total	592 mg	g/kg	97.4	1	10/07/13 15:05	10/07/13 22:28	7727-37-9	
365.4 Total Phosphorus	Analytical Meth	nod: EPA 365.	4 Preparation Met	hod: El	PA 365.4			
Phosphorus	393 mg]/kg	40.4	1	10/17/13 09:00	10/17/13 12:25	7723-14-0	
Total Organic Carbon	Analytical Meth	nod: EPA 9060) Modified					
Surrogates								
RPD%	42.5 %			1		10/11/13 10:48		
Total Organic Carbon	56100 mg	J/kg	1490	1		10/11/13 10:41	7440 - 44-0	
Total Organic Carbon	36500 mg	g/kg	1490	1		10/11/13 10:48	7440-44-0	
Mean Total Organic Carbon	46300 mg	ı/kg	1490	1		10/11/13 10:48	7440-44-0	2a

Project: D DOCK Pace Project No.: 4086098

Date: 10/17/2013 04:45 PM

Sample: SB-6-13 (12.5-17.5) Lab ID: 4086098005 Collected: 09/30/13 00:00 Received: 10/04/13 09:10 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qu
8082 GCS PCB	Analytical Meth	od: EPA 808	2 Preparation Met	hod: EF	PA 3541			
PCB-1016 (Aroclor 1016)	ND ug/	/kg	78.5	1	10/08/13 11:25	10/09/13 18:47	12674-11-2	
PCB-1221 (Aroclor 1221)	ND ug/	/kg	78.5	1	10/08/13 11:25	10/09/13 18:47	11104-28-2	
PCB-1232 (Aroclor 1232)	ND ug/	/kg	78.5	1	10/08/13 11:25	10/09/13 18:47	11141-16-5	
CB-1242 (Aroclor 1242)	ND ug/	′kg	78.5	1	10/08/13 11:25	10/09/13 18:47	53469-21-9	
CB-1248 (Aroclor 1248)	ND ug/	′kg	78.5	1	10/08/13 11:25	10/09/13 18:47	12672-29-6	
CB-1254 (Aroclor 1254)	ND ug/	'kg	78.5	1	10/08/13 11:25	10/09/13 18:47	11097-69-1	
CB-1260 (Aroclor 1260)	ND ug/	'kg	78.5	1	10/08/13 11:25	10/09/13 18:47	11096-82-5	
CB, Total	ND ug/	'kg	78.5	1	10/08/13 11:25	10/09/13 18:47	1336-36-3	
urrogates	_	_						
etrachloro-m-xylene (S)	67 %		40-130	1	10/08/13 11:25	10/09/13 18:47	877-09-8	
ecachlorobiphenyl (S)	69 %		48-130	1	10/08/13 11:25	10/09/13 18:47	2051-24-3	
010 MET ICP	Analytical Meth	od: EPA 6010	0 Preparation Meth	nod: EF	A 3050			
rsenic	ND mg	/kg	3.1	1	10/08/13 14:06	10/09/13 20:30	7440-38-2	
admium	ND mg	/kg	0.77	1	10/08/13 14:06	10/09/13 20:30	7440-43-9	
hromium	11.7 mg	/kg	0.77	1	10/08/13 14:06	10/09/13 20:30	7440-47-3	
оррег	15.5 mg		1.5	1	10/08/13 14:06	10/09/13 20:30	7440-50-8	
ead	25.9 mg		1.5	1	10/08/13 14:06	10/09/13 20:30	7439-92-1	
ickel	7.9 mg		1.5	1	10/08/13 14:06	10/09/13 20:30	7440-02-0	
elenium	ND mg		3.1	1	10/08/13 14:06	10/09/13 20:30	7782-49-2	
inc	48.8 mg	_	6.1	1		10/09/13 20:30		
471 Mercury	Analytical Meth	od: EPA 747	Preparation Meth	od: EP	A 7471			
ercury	0.074 mg/	/kg	0.0089	1	10/08/13 14:28	10/08/13 18:44	7439-97-6	
270 MSSV PAH by SIM	Analytical Methe	od: EPA 8270	by SIM Preparati	on Meti	hod: EPA 3546			
cenaphthene	2490 ug/i	kg	523	20	10/11/13 20:31	10/15/13 19:14	83-32-9	
cenaphthylene	ND ug/l	kg	523	20	10/11/13 20:31	10/15/13 19:14	208-96-8	
nthracene	1480 ug/l	kg	523	20	10/11/13 20:31	10/15/13 19:14	120-12-7	
enzo(a)anthracene	668 ug/l	kg	523	20	10/11/13 20:31	10/15/13 19:14	56-55 - 3	
enzo(a)pyrene	598 ug/l	kg	523	20	10/11/13 20:31	10/15/13 19:14	50-32-8	
enzo(b)fluoranthene	ND ug/l	kg	523	20	10/11/13 20:31	10/15/13 19:14	205-99-2	1q
enzo(g,h,i)perylene	ND ug/l	kg	523	20	10/11/13 20:31	10/15/13 19:14	191-24-2	
enzo(k)fluoranthene	558 ug/l	kg	523	20	10/11/13 20:31	10/15/13 19:14	207-08-9	1q
nrysene	702 ug/l	kg	523	20	10/11/13 20:31	10/15/13 19:14	218-01-9	•
benz(a,h)anthracene	ND ug/l	•	523	20	10/11/13 20:31	10/15/13 19:14	53-70-3	
uoranthene	1650 ug/k	kg	523	20	10/11/13 20:31	10/15/13 19:14	206-44-0	
uorene	1170 ug/l	•	523	20		10/15/13 19:14		
deno(1,2,3-cd)pyrene	ND ug/l	_	523	20		10/15/13 19:14		
aphthalene	4520 ug/k		523	20		10/15/13 19:14		
nenanthrene	3790 ug/k		523	20		10/15/13 19:14		
rene	1860 ug/l	_	523	20		10/15/13 19:14		
ırrogates	.000 ug/i	*3	320				000	
Fluorobiphenyl (S)	72 %		40-130	20	10/11/13 20:31	10/15/13 19:14	321-60-8	
erphenyl-d14 (S)	62 %		40-130	20		10/15/13 19:14		

REPORT OF LABORATORY ANALYSIS

Project:

D DOCK

Pace Project No.:

4086098

Sample: SB-6-13 (12.5-17.5)

Lab ID: 4086098005

Units

Collected: 09/30/13 00:00

Report Limit

Prepared

Received: 10/04/13 09:10

CAS No.

Qual

Parameters

Results reported on a "dry-weight" basis

Analytical Method: ASTM D2974-87

Results

36.3 %

0.10 1

DF

10/14/13 16:18

Analyzed

Percent Moisture 300.0 IC Anions

Percent Moisture

Analytical Method: EPA 300.0 Preparation Method: EPA 300.0

10/07/13 14:22 10/08/13 22:03 14797-55-8

Nitrate as N Nitrite as N

ND mg/kg ND mg/kg ND mg/kg 4.7 3.1 4.7

10/07/13 14:22 10/08/13 22:03 14797-65-0 10/07/13 14:22 10/08/13 22:03

Nitrogen, NO2 plus NO3

Nitrogen, Ammonia

350.1 Ammonia Analytical Method: EPA 350.1 Preparation Method: EPA 350.1

Analytical Method: EPA 365.4 Preparation Method: EPA 365.4

22.4

10/11/13 18:50 10/11/13 20:36 7664-41-7

351.2 Total Kjeldahl Nitrogen

79.3 mg/kg Analytical Method: EPA 351.2 Preparation Method: EPA 351.2

Nitrogen, Kjeldahl, Total

1080 mg/kg

143

10/07/13 15:05 10/07/13 22:28 7727-37-9

365.4 Total Phosphorus

368 mg/kg

50.2

1

10/17/13 09:00 10/17/13 12:26 7723-14-0

Total Organic Carbon

Mean Total Organic Carbon

Date: 10/17/2013 04:45 PM

Analytical Method: EPA 9060 Modified

Surrogates RPD%

Phosphorus

Total Organic Carbon Total Organic Carbon

18.9 %

44000 mg/kg 53200 mg/kg 48600 mg/kg 1850 1830 1840

1 1 1 1

10/11/13 10:55 7440-44-0 10/11/13 11:01 7440-44-0

10/11/13 11:01

10/11/13 11:01 7440-44-0

REPORT OF LABORATORY ANALYSIS

Project:

D DOCK

Pace Project No.:

4086098

Results reported on a "dry-weight" basis

Sample: SB-6-13 (17.5-22.5)

Lab ID: 4086098006

Results

Collected: 09/30/13 00:00

DF

1

Report Limit

Received: 10/04/13 09:10 Matrix: Solid

Prepared

Analyzed

10/08/13 11:25 10/09/13 19:05 11096-82-5

10/08/13 11:25 10/09/13 19:05 1336-36-3

10/12/13 12:00 10/15/13 06:16 85-01-8

CAS No.

Qual

•
Parameters
8082 GCS PCB
PCB-1016 (Aroclor 1016)
PCB-1221 (Aroclor 1221)
PCB-1232 (Aroclor 1232)

PCB-1242 (Aroclor 1242)

Tetrachloro-m-xylene (S)

Decachlorobiphenyl (S)

Zinc

Mercury

Phenanthrene

Surrogates 2-Fluorobiphenyl (S)

Terphenyl-d14 (S)

Date: 10/17/2013 04:45 PM

Pyrene

Analytical Method: EPA 8082	Preparation Meth	nod: E	PA 3541		
ND ug/kg	89.0	1	10/08/13 11:25	10/09/13 19:05	12674-11-2
ND ug/kg	89.0	1	10/08/13 11:25	10/09/13 19:05	11104-28-2

Units

ND ug/kg	89.0	1	10/08/13 11:25	10/09/13 19:05	11104-28-2
ND ug/kg	89.0	1	10/08/13 11:25	10/09/13 19:05	11141-16-5
ND ug/kg	89.0	1	10/08/13 11:25	10/09/13 19:05	53469-21-9
ND ug/kg	89.0	1	10/08/13 11:25	10/09/13 19:05	12672-29-6
ND ug/kg	89.0	1	10/08/13 11:25	10/09/13 19:05	11097-69-1

PCB-1248 (Aroclor 1248)	ND valles	89.0
FCD-1246 (AIUGUI 1246)	ND ug/kg	09.0
PCB-1254 (Aroclor 1254)	ND ug/kg	89.0
PCB-1260 (Aroclor 1260)	ND ug/kg	89.0
PCB, Total	ND ug/kg	89.0
Surrogates		

75 %	40-130	1	10/08/13 11:25	10/09/13 19:05	877-09-8
73 %	48-130	1	10/08/13 11:25	10/09/13 19:05	2051-24-3

6010 MET ICP	Analytical Method: EPA 6010 F	reparation Meth	od: El	PA 3050		
Arseniç	3.8 mg/kg	3.0	1	10/08/13 14:06	10/09/13 20:36	7440-38-2
Cadmium	ND mg/kg	0.76	1	10/08/13 14:06	10/09/13 20:36	7440-43-9
Chromium	18.7 mg/kg	0.76	1	10/08/13 14:06	10/09/13 20:36	7440-47-3
Copper	17.3 mg/kg	1.5	1	10/08/13 14:06	10/09/13 20:36	7440-50-8
Lead	24.5 mg/kg	1.5	1	10/08/13 14:06	10/09/13 20:36	7439-92-1
Nickel	13.5 mg/kg	1,5	1	10/08/13 14:06	10/09/13 20:36	7440-02-0
Selenium	ND mg/kg	3.0	1	10/08/13 14:06	10/09/13 20:36	7782-49-2

Zinc	58.7 mg/kg	6.1	1	10/08/13 14:06	10/09/13 20:36	7440-66-6
7471 Mercury	Analytical Method: EPA 7471 Preparat	ion Meth	od: EF	A 7471		

58.7 ma/ka

222 ug/kg

0.12 mg/kg	0.011	1	10/08/13 14:28	10/08/13 18:50	7439-97-6
. 4:! Ma-4:	Dunnanatia	n 1.1ai	had. EDA 0546		

8270 MSSV PAH by SIM	Analytical Method: EPA 8270 by SIN	/ Preparation	on Mei	thod: EPA 3546			
Acenaphthene	60.1 ug/kg	29.7	1	10/12/13 12:00	10/15/13 06:16	83-32-9	
Acenaphthylene	ND ug/kg	29.7	1	10/12/13 12:00	10/15/13 06:16	208-96 - 8	
Anthracene	59.6 ug/kg	29.7	1	10/12/13 12:00	10/15/13 06:16	120-12-7	
Benzo(a)anthracene	79.1 ug/kg	29.7	1	10/12/13 12:00	10/15/13 06:16	56-55-3	
Benzo(a)pyrene	95.0 ug/kg	29.7	1	10/12/13 12:00	10/15/13 06:16	50-32-8	
Benzo(b)fluoranthene	80.8 ug/kg	29.7	1	10/12/13 12:00	10/15/13 06:16	205-99-2	1q
Benzo(g,h,i)perylene	42.9 ug/kg	29.7	1	10/12/13 12:00	10/15/13 06:16	191-24-2	
Benzo(k)fluoranthene	63.6 ug/kg	29.7	1	10/12/13 12:00	10/15/13 06:16	207-08-9	1q
Chrysene	91.8 ug/kg	29.7	1	10/12/13 12:00	10/15/13 06:16	218-01-9	
Dibenz(a,h)anthracene	ND ug/kg	29.7	1	10/12/13 12:00	10/15/13 06:16	53-70-3	
Fluoranthene	187 ug/kg	29.7	1	10/12/13 12:00	10/15/13 06:16	206-44-0	
Fluorene	40.3 ug/kg	29.7	1	10/12/13 12:00	10/15/13 06:16	86-73-7	
Indeno(1,2,3-cd)pyrene	37.3 ug/kg	29.7	1	10/12/13 12:00	10/15/13 06:16	193-39-5	
Naphthalene	190 ua/ka	29.7	1	10/12/13 12:00	10/15/13 06:16	91-20-3	

195 ug/kg	29.7	1	10/12/13 12:00	10/15/13 06:16	129-00-0
91 %	40-130	1	10/12/13 12:00	10/15/13 06:16	321-60-8
79 %	40-130	1	10/12/13 12:00	10/15/13 06:16	1718-51-0

1

29.7

Project:

D DOCK

Pace Project No.: 4086098

Date: 10/17/2013 04:45 PM

Sample: SB-6-13 (17.5-22.5)

Lab ID: 4086098006

Collected: 09/30/13 00:00 Received: 10/04/13 09:10 Matrix: Solid

Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Mel	hod: ASTM D	2974-87					
Percent Moisture	43.8 %	•	0.10	1		10/14/13 16:19		
300.0 IC Anions	Analytical Met	hod: EPA 300	.0 Preparation Met	hod: El	PA 300.0			
Nitrate as N	ND m	g/kg	5.4	1	10/07/13 14:22	10/08/13 22:11	14797-55-8	
Nitrite as N	ND m	g/kg	3.6	1	10/07/13 14:22	10/08/13 22:11	14797-65-0	
Nitrogen, NO2 plus NO3	ND m	g/kg	5.4	1	10/07/13 14:22	10/08/13 22:11		
350.1 Ammonia	Analytical Met	hod: EPA 350.	1 Preparation Met	hod: El	PA 350.1			
Nitrogen, Ammonia	157 m	g/kg	21.4	1	10/11/13 18:50	10/11/13 20:37	7664-41-7	
351.2 Total Kjeldahl Nitrogen	Analytical Met	hod: EPA 351.	2 Preparation Met	hod: El	PA 351.2			
Nitrogen, Kjeldahl, Total	1850 m	g/kg	137	1	10/07/13 15:05	10/07/13 22:29	7727-37-9	
365.4 Total Phosphorus	Analytical Met	hod: EPA 365.	4 Preparation Met	hod: El	PA 365.4			
Phosphorus	431 m	g/kg	64.7	1	10/17/13 09:00	10/17/13 12:28	7723-14-0	
Total Organic Carbon	Analytical Met	hod: EPA 9060) Modified					
Surrogates								
RPD%	11.3 %			1		10/11/13 11:14		
Total Organic Carbon	49600 m	g/kg	2580	1		10/11/13 11:08	7440-44-0	
Total Organic Carbon	44300 m	g/kg	2570	1		10/11/13 11:14	7440-44-0	
Mean Total Organic Carbon	47000 mg	g/kg	2580	1		10/11/13 11:14	7440-44-0	

ட

Project:

D DOCK

Pace Project No.:

4086098

Results reported on a "dry-weight" basis

Sample: SB-6-13 (24-30.5)

Lab ID: 4086098007

Collected: 09/30/13 00:00

Report Limit

Received: 10/04/13 09:10

Prepared

Matrix: Solid

CAS No.

Qual

Parameters

Analytical Method: ASTM D2974-87

Units

Results

Percent Moisture Percent Moisture

Date: 10/17/2013 04:45 PM

20.5 %

0.10 1

DF

10/14/13 16:19

Analyzed

ப

Project:

D DOCK

Pace Project No.: 4086098

Date: 10/17/2013 04:45 PM

Sample: SB-7-13 (19-21.5)

Lab ID: 4086098008

Collected: 10/02/13 00:00 Received: 10/04/13 09:10 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Q
1 didillotois	Todalo	Office	- Troport Ellint	<i>D</i> ,	Trepared	Allalyzed		
8082 GCS PCB	Analytical Meth	od: EPA 808	2 Preparation Met	nod: EF	PA 3541			
PCB-1016 (Aroclor 1016)	ND ug/	kg	67.5	1	10/08/13 11:25	10/09/13 19:22	12674-11-2	
PCB-1221 (Aroclor 1221)	ND ug/	kg	67.5	1	10/08/13 11:25	10/09/13 19:22	11104-28-2	
PCB-1232 (Aroclor 1232)	ND ug/	kg	67.5	1	10/08/13 11:25	10/09/13 19:22	11141-16-5	
PCB-1242 (Aroclor 1242)	ND ug/	kg	67.5	1	10/08/13 11:25	10/09/13 19:22	53469-21-9	
PCB-1248 (Aroclor 1248)	ND ug/	kg	67.5	1	10/08/13 11:25	10/09/13 19:22	12672-29-6	
PCB-1254 (Araclor 1254)	ND ug/	kg	67.5	1	10/08/13 11:25	10/09/13 19:22	11097-69-1	
PCB-1260 (Aroclor 1260)	ND ug/	kg	67.5	1	10/08/13 11:25	10/09/13 19:22	11096-82-5	
PCB, Total	ND ug/	kg	67.5	1	10/08/13 11:25	10/09/13 19:22	1336-36-3	
Surrogates	Ū							
[etrachloro-m-xylene (S)	88 %		40-130	1	10/08/13 11:25	10/09/13 19:22	877-09-8	
ecachlorobiphenyl (S)	87 %		48-130	1	10/08/13 11:25	10/09/13 19:22	2051-24-3	
010 MET ICP	Analytical Metho	od: EPA 6016	0 Preparation Meth	od: EP	A 3050			
Arsenic	ND mg/	/kg	2.5	1	10/08/13 14:06	10/09/13 20:39	7440-38-2	
Cadmium	ND mg/	′kg	0.61	1	10/08/13 14:06	10/09/13 20:39	7440-43-9	
Chromium	11.6 mg/	_	0.61	1	10/08/13 14:06	10/09/13 20:39	7440-47-3	
Copper	9.4 mg/	_	1.2	1		10/09/13 20:39		
ead	8.2 mg/		1.2	1		10/09/13 20:39		
lickel	8.6 mg/		1.2	1	10/08/13 14:06	10/09/13 20:39	7440-02-0	
ielenium	ND mg/		2.5	1		10/09/13 20:39		
inc	33.8 mg/	•	4.9	1		10/09/13 20:39		
471 Mercury	Analytical Metho	od: EPA 747	1 Preparation Meth	od: EP	A 7 471			
lercury	0.019 mg/	kg	0.0082	1	10/08/13 14:28	10/08/13 18:52	7439-97-6	
270 MSSV PAH by SIM	Analytical Metho	od: EPA 8270	by SiM Preparation	on Metl	10d: EPA 3546			
cenaphthene	ND ug/k	g	45.0	1	10/14/13 11:30	10/15/13 16:20	83-32 - 9	
cenaphthylene	ND ug/k	kg .	45.0	1	10/14/13 11:30	10/15/13 16:20	208-96-8	
nthracene	ND ug/k	g	45.0	1.	10/14/13 11:30	10/15/13 16:20	120-12-7	
enzo(a)anthracene	ND ug/k	g	45.0	1	10/14/13 11:30	10/15/13 16:20	56-55-3	
enzo(a)pyrene	ND ug/k	ig.	45.0	1	10/14/13 11:30	10/15/13 16:20	50-32-8	
enzo(b)fluoranthene	ND ug/k	g	45.0	1	10/14/13 11:30	10/15/13 16:20	205-99-2	1g
enzo(g,h,i)perylene	ND ug/k	_	45.0	1	10/14/13 11:30	10/15/13 16:20	191-24-2	•
enzo(k)fluoranthene	ND ug/k		45.0	1		10/15/13 16:20		1q
hrysene	ND ug/k	_	45.0	1		10/15/13 16:20		- 7
ibenz(a,h)anthracene	ND ug/k	-	45.0	i i		10/15/13 16:20		
uoranthene	65.0 ug/k	-	45.0	1		10/15/13 16:20		
luorene	ND ug/k	•	45.0	1		10/15/13 16:20		
deno(1,2,3-cd)pyrene	ND ug/k		45.0	1		10/15/13 16:20		
aphthalene	ND ug/k	_	45.0	1		10/15/13 16:20		
nenanthrene	45.6 ug/k		45.0	1		10/15/13 16:20		
yrene	55.6 ug/k		45.0	1		10/15/13 16:20		
•	oo.o ug/k	9	40.0	ı	טט.נו טוידויטי	10/10/10 10.20	123-00-0	
urrogaies								
<i>urrogates</i> Fluorobiphenyl (S)	54 %		40-130	1	10/14/13 11:30	10/15/13 16:20	321-60-8	

REPORT OF LABORATORY ANALYSIS

L

Project:

RPD%

Total Organic Carbon

Total Organic Carbon

Mean Total Organic Carbon

Date: 10/17/2013 04:45 PM

D DOCK

Pace Project No.:

4086098

Sample: SB-7-13 (19-21.5)

Lab ID: 4086098008

5.3 %

6450 mg/kg

6110 mg/kg

6280 mg/kg

Collected: 10/02/13 00:00

Received: 10/04/13 09:10

10/11/13 11:26

10/11/13 11:21 7440-44-0

10/11/13 11:26` 7440-44-0

10/11/13 11:26 7440-44-0

Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Meti	nod: ASTM D	2974-87					
Percent Moisture	26.0 %		0.10	1		10/14/13 16:19		
300.0 IC Anions	Analytical Meth	nod: EPA 300.	.0 Preparation Met	thod: E	PA 300.0			
Nitrate as N Nitrite as N Nitrogen, NO2 plus NO3	ND mg ND mg ND mg	g/kg	4.0 2.7 4.0	1 1 1	10/07/13 14:22 10/07/13 14:22 10/07/13 14:22	10/08/13 22:19		
350.1 Ammonia	Analytical Meth	nod: EPA 350.	.1 Preparation Met	hod: E	PA 350.1			
Nitrogen, Ammonia	52.0 mg	g/kg	17.6	1	10/11/13 18:50	10/11/13 20:38	7664-41-7	
351.2 Total Kjeldahl Nitrogen	Analytical Meth	nod: EPA 351.	2 Preparation Met	hod: E	PA 351.2			
Nitrogen, Kjeldahl, Total	655 mg	ı/kg	100	1	10/07/13 15:05	10/07/13 22:30	7727-37-9	
365.4 Total Phosphorus	Analytical Meth	od: EPA 365.	4 Preparation Met	hod: E	PA 365.4			
Phosphorus	345 mg	ı/kg	31.8	1	10/17/13 09:00	10/17/13 12:29	7723-14-0	
Total Organic Carbon	Analytical Meth	od: EPA 9060	0 Modified					
Surrogates								

1

1

1

1

1240

1240

1240

ட

Project:

D DOCK

Pace Project No.:

4086098

Results reported on a "dry-weight" basis

Sample: SB-7-13 (21.5-31.5)

Lab ID: 4086098009

Collected: 10/02/13 00:00

Report Limit

Prepared

Received: 10/04/13 09:10

Analyzed

Matrix: Solid

CAS No.

Qual

Parameters

Date: 10/17/2013 04:45 PM

Analytical Method: ASTM D2974-87

Units

Percent Moisture Percent Moisture

20.0 %

Results

0.10 1

DF

10/14/13 16:19

REPORT OF LABORATORY ANALYSIS

Project:

D DOCK

Pace Project No.:

Date: 10/17/2013 04:45 PM

4086098

Results reported on a "dry-weight" basis

Sample: SB-8-13 (14.5-17)

Lab ID: 4086098010

Collected: 10/02/13 00:00 Received: 10/04/13 09:10 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical Meti	nod: EPA 808	2 Preparation Meti	hod: EF	PA 3541			
PCB-1016 (Aroclor 1016)	ND ug	/kg	64.7	1	10/08/13 11:25	10/09/13 19:40	12674-11-2	
PCB-1221 (Aroclor 1221)	ND ug	/kg	64.7	1	10/08/13 11:25	10/09/13 19:40	11104-28-2	
PCB-1232 (Aroclor 1232)	ND ug	/kg	64.7	1	10/08/13 11:25	10/09/13 19:40	11141-16-5	
PCB-1242 (Aroclor 1242)	ND ug	_	64.7	1	10/08/13 11:25	10/09/13 19:40	53469-21-9	
PCB-1248 (Aroclor 1248)	ND ug	/kg	64.7	1	10/08/13 11:25	10/09/13 19:40	12672-29-6	
PCB-1254 (Aroclor 1254)	ND ug	/kg	64.7	1		10/09/13 19:40		
PCB-1260 (Aroclor 1260)	ND ug	/kg	64.7	1	10/08/13 11:25	10/09/13 19:40	11096-82-5	
PCB, Total	ND ug	/kg	64.7	1		10/09/13 19:40		
Surrogates	_	_						
Tetrachloro-m-xylene (S)	74 %		40-130	1	10/08/13 11:25	10/09/13 19:40	877-09-8	
Decachlorobiphenyl (S)	75 %		48-130	1	10/08/13 11:25	10/09/13 19:40	2051-24-3	
6010 MET ICP	Analytical Meth	nod: EPA 601	Preparation Meth	rod: EF	A 3050			
Arsenic	ND mg	ı/kg	2.6	1	10/08/13 14:06	10/09/13 20:41	7440-38-2	
Cadmium	ND mg	ı/kg	0.64	1	10/08/13 14:06	10/09/13 20:41	7440-43-9	
Chromium	7.9 mg	_	0.64	1		10/09/13 20:41		
Copper	6.8 mg	_	1.3	1		10/09/13 20:41		
Lead	6.2 mg	•	1.3	1		10/09/13 20:41		
Nickel	6.0 mg	_	1.3	1		10/09/13 20:41		
Selenium	ND mg	•	2.6	1		10/09/13 20:41		
Zinc	23.6 mg	•	5.1	1		10/09/13 20:41		
7471 Mercury	Analytical Meth	od: EPA 747	Preparation Meth	od: EP	A 7471			
Mercury	0.013 mg	/kg	0.0073	1	10/08/13 14:28	10/08/13 18:54	7439-97-6	
8270 MSSV PAH by SIM	Analytical Meth	od: EPA 8270	by SIM Preparation	on Meti	nod: EPA 3546			
Acenaphthene	75.4 ug/	kg	21.6	1	10/14/13 11:30	10/15/13 17:47	83-32-9	
Acenaphthylene	ND ug/	kg	21.6	1	10/14/13 11:30	10/15/13 17:47	208-96-8	
Anthracene	183 ug/	kg	21.6	1	10/14/13 11:30	10/15/13 17:47	120-12-7	
Benzo(a)anthracene	161 ug/	kg	21.6	1	10/14/13 11:30	10/15/13 17:47	56-55-3	
Benzo(a)pyrene	141 ug/	kg	21.6	1	10/14/13 11:30	10/15/13 17:47	50-32-8	
Benzo(b)fluoranthene	135 ug/	kg	21.6	1	10/14/13 11:30	10/15/13 17:47	205-99-2	1q
Benzo(g,h,i)perylene	67.8 ug/	kg	21.6	1	10/14/13 11:30	10/15/13 17:47	191-24-2	•
Benzo(k)fluoranthene	117 ug/	kg	21.6	1	10/14/13 11:30	10/15/13 17:47	207-08-9	1q
Chrysene	166 ug/	kg	21.6	1	10/14/13 11:30	10/15/13 17:47	218-01-9	•
Dibenz(a,h)anthracene	27.5 ug/	kg	21.6	1	10/14/13 11:30	10/15/13 17:47	53-70-3	
Fluoranthene	387 ug/	kg	21.6	1		10/15/13 17:47		
Fluorene	119 ug/	_	21.6	1		10/15/13 17:47		
ndeno(1,2,3-cd)pyrene	62.8 ug/	-	21.6	1		10/15/13 17:47		
Naphthalene	117 ug/	-	21.6	1		10/15/13 17:47		
Phenanthrene	522 ug/s	-	21.6	1		10/15/13 17:47		
Pyrene	297 ug/l	-	21.6	1		10/15/13 17:47		
Surrogates	- · • • • • • • • • • • • • • • • • • •	-		-				
2-Fluorobiphenyl (S)	77 %		40-130	1	10/14/13 11:30	10/15/13 17:47	321-60-8	

REPORT OF LABORATORY ANALYSIS

Project:

D DOCK

Pace Project No.:

4086098

Sample: SB-8-13 (14.5-17)

Lab ID: 4086098010

Collected: 10/02/13 00:00 Received: 10/04/13 09:10 Matrix: Solid

Results reported on a "dry-weigh	ıt" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Met	thod: ASTM D	2974-87					
Percent Moisture	22.7 %	,	0.10	1		10/14/13 16:19		
300.0 IC Anions	Analytical Met	thod: EPA 300	.0 Preparation Met	hod: El	PA 300.0			
Nitrate as N	ND m	g/kg	3.9	1	10/07/13 14:22	10/08/13 22:27	14797 - 55-8	
Nitrite as N	ND m	ıg/kg	2.6	1	10/07/13 14:22	10/08/13 22:27	14797-65-0	
Nitrogen, NO2 plus NO3	ND m	g/kg	3.9	1	10/07/13 14:22	10/08/13 22:27		
350.1 Ammonia	Analytical Met	hod: EPA 350	.1 Preparation Met	hod: El	PA 350.1			
Nitrogen, Ammonia	31.5 m	g/kg	19.4	1	10/11/13 18:50	10/11/13 20:39	7664-41-7	
351.2 Total Kjeldahl Nitrogen	Analytical Met	hod: EPA 351.	.2 Preparation Met	hod: El	PA 351.2			
Nitrogen, Kjeldahl, Total	247 m	g/kg	112	1	10/07/13 15:05	10/07/13 22:31	7727-37-9	
365.4 Total Phosphorus	Analytical Met	hod: EPA 365.	4 Preparation Met	hod: El	PA 365.4			
Phosphorus	246 m	g/kg	29.6	1	10/17/13 09:00	10/17/13 12:29	7723-14-0	
Total Organic Carbon	Analytical Met	hod: EPA 9060	0 Modified					
Surrogates								
RPD%	12.3 %			1		10/11/13 11:38		
Total Organic Carbon	4220 m		891	1		10/11/13 11:32	7440-44-0	
Total Organic Carbon	3 730 m		882	1		10/11/13 11:38	7440-44-0	
Mean Total Organic Carbon	3980 m	g/kg	886	1		10/11/13 11:38	7440-44-0	

Pace Analytical Services, Inc. 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

ANALYTICAL RESULTS

Project:

D DOCK

Pace Project No.:

4086098

Results reported on a "dry-weight" basis **Parameters**

Sample: SB-8-13 (17-32)

Lab ID: 4086098011

Collected: 10/02/13 00:00

Report Limit

Received: 10/04/13 09:10

Prepared

Matrix: Solid

CAS No.

Qual

Percent Moisture

Analytical Method: ASTM D2974-87

Units

Percent Moisture

Date: 10/17/2013 04:45 PM

20.7 %

Results

1 0.10

DF

10/14/13 16:19

Analyzed

REPORT OF LABORATORY ANALYSIS

Project:

D DOCK

Pace Project No.:

4086098

QC Batch:

MERP/3901

Analysis Method:

EPA 7471

QC Batch Method:

EPA 7471

Analysis Description:

7471 Mercury

Associated Lab Samples:

4086098001, 4086098002, 4086098003, 4086098004, 4086098005, 4086098006, 4086098008, 4086098010

METHOD BLANK: 870960

Matrix: Solid

Associated Lab Samples:

4086098001, 4086098002, 4086098003, 4086098004, 4086098005, 4086098006, 4086098008, 4086098010

Blank

Reporting

Parameter

Units

Units

4085983021

Result

Limit

Analyzed

Qualifiers

Mercury

mg/kg

ND

0.0067 10/08/13 18:09

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Date: 10/17/2013 04:45 PM

Spike Conc.

LCS Result

LCS % Rec

% Rec Limits

Qualifiers

Mercury

mg/kg

.17

0.17

102

85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

870962

870963

MS

MSD Spike

MSD

MS % Rec MSD % Rec

Max RPD RPD Qual

Mercury

Units Result mg/kg 0.065

Spike Conc.

Conc. .21

Result 0.25 .21

MS

Result 0.30

% Rec 92 114 Limits 85-115 16

20

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

D DOCK

Pace Project No.:

4086098

QC Batch:

MPRP/9280

Analysis Method:

EPA 6010

QC Batch Method:

EPA 3050

Analysis Description:

6010 MET

Associated Lab Samples:

 $4086098001,\,4086098002,\,4086098003,\,4086098004,\,4086098005,\,4086098006,\,4086098008,\,4086098010$

METHOD BLANK: 870934

Matrix: Solid

Associated Lab Samples:

Date: 10/17/2013 04:45 PM

4086098001, 4086098002, 4086098003, 4086098004, 4086098005, 4086098006, 4086098008, 4086098010

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND	2.0	10/09/13 19:48	
Cadmium	mg/kg	ND	0.50	10/09/13 19:48	
Chromium	mg/kg	ND	0.50	10/09/13 19:48	
Copper	mg/kg	ND	1.0	10/09/13 19:48	
Lead	mg/kg	ND	1.0	10/09/13 19:48	
Nickel	mg/kg	ND	1.0	10/09/13 19:48	
Selenium	mg/kg	ND	2.0	10/09/13 19:48	
Zinc	mg/kg	ND	4.0	10/09/13 19:48	

LABORATORY CUNTROL SAMPLE	870935					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/kg		43.4	87	80-120	
Cadmium	mg/kg	50	44.6	89	80-120	
Chromium	mg/kg	50	42.7	85	80-120	
Copper	mg/kg	50	44.6	89	80-120	
Lead	mg/kg	50	45.4	91	80-120	
Nickel	mg/kg	50	42.1	84	80-120	
Selenium	mg/kg	50	43.8	88	80-120	
Zinc	mg/kg	50	43.7	87	80-120	

MATRIX SPIKE & MATRIX	SPIKE DUPLICAT	E: 87093	6		870937							
			MS	MSD								
	40	86076001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/kg	3.5	58	57.6	51.0	52.0	82	84	75-125		20	
Cadmium	mg/kg	0.21J	58	57.6	49.8	50.7	86	88	75-125	2	20	
Chromium	mg/kg	17.7	58	57.6	56.8	57.8	68	70	75-125	2	20	MO
Copper	mg/kg	11.5	58	57.6	58.6	59.8	81	84	75-125	2	20	
Lead	mg/kg	4.4	58	57.6	49.3	51.3	78	81	75-125	4	20	
Nickel	mg/kg	8.0	58	57.6	50.1	50.6	73	74	75-125	1	20	M0
Selenium	mg/kg	< 0.69	58	57.6	46.8	48.6	81	84	75-125	4	20	
Zinc	ma/ka	21.6	58	57.6	63.5	64.6	72	75	75-125	2	20	M0

Project:

D DOCK

Pace Project No.:

4086098

QC Batch:

OEXT/20147

Analysis Method:

EPA 8082

QC Batch Method:

EPA 3541

Analysis Description:

8082 GCS PCB

Associated Lab Samples:

4086098001, 4086098002, 4086098003, 4086098004, 4086098005, 4086098006, 4086098008, 4086098010

METHOD BLANK: 870999

Matrix: Solid

Associated Lab Samples:

Date: 10/17/2013 04:45 PM

4086098001, 4086098002, 4086098003, 4086098004, 4086098005, 4086098006, 4086098008, 4086098010

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	ND	50.0	10/09/13 13:04	-
PCB-1221 (Aroclor 1221)	ug/kg	ND	50.0	10/09/13 13:04	
PCB-1232 (Aroclor 1232)	ug/kg	ND	50.0	10/09/13 13:04	
PCB-1242 (Aroclor 1242)	ug/kg	ND	50.0	10/09/13 13:04	
PCB-1248 (Aroclor 1248)	ug/kg	ND	50.0	10/09/13 13:04	
PCB-1254 (Aroclor 1254)	ug/kg	ND	50.0	10/09/13 13:04	
PCB-1260 (Aroclor 1260)	ug/kg	ND	50.0	10/09/13 13:04	
Decachlorobiphenyl (S)	%	95	48-130	10/09/13 13:04	
Tetrachloro-m-xylene (S)	%	91	40-130	10/09/13 13:04	

LABORATORY CONTROL SAM	PLE: 871000					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg		ND			
PCB-1221 (Aroclor 1221)	ug/kg		ND			
PCB-1232 (Aroclor 1232)	ug/kg		ND			
² CB-1242 (Aroclor 1242)	ug/kg		ND			
CB-1248 (Aroclor 1248)	ug/kg		ND			
CB-1254 (Aroclor 1254)	ug/kg		ND			
CB-1260 (Aroclor 1260)	ug/kg	500	467	93	70-130	
Decachlorobiphenyl (S)	%			90	48-130	
etrachloro-m-xylene (S)	%			86	40-130	

MATRIX SPIKE & MATRIX SP	PIKE DUPLICAT	E: 87100	1		871002							
Parameter	40 Units	086154005 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
PCB-1016 (Aroclor 1016)	ug/kg	<29.5			ND	ND					31	-
PCB-1221 (Aroclor 1221)	ug/kg ug/kg	<29.5			ND	ND					31	
PCB-1232 (Aroclor 1232)	ug/kg	<29.5			ND	ND					31	
PCB-1242 (Aroclor 1242)	ug/kg	<29.5			ND	ND					31	
PCB-1248 (Aroclor 1248)	ug/kg	30.7J			37.6J	52.1J					31	
PCB-1254 (Araclor 1254)	ug/kg	<29.5			ND	ND					31	
PCB-1260 (Aroclor 1260)	ug/kg	<29.5	590	590	508	499	86	85	40-149	2	31	
Decachlorobiphenyl (S)	%						83	83	48-130			
Tetrachloro-m-xylene (S)	%						78	77	40-130			

Project:

D DOCK

Pace Project No.:

4086098

QC Batch:

OEXT/20192

Analysis Method:

EPA 8270 by SIM

QC Batch Method:

EPA 3546

Analysis Description:

8270/3546 MSSV PAH by SIM

Associated Lab Samples:

METHOD BLANK: 874241

4086098004, 4086098005

Matrix: Solid

Associated Lab Samples:

Date: 10/17/2013 04:45 PM

4086098004, 4086098005

Accounted East Campies.	4000090004, 4000090000				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Acenaphthene	 ug/kg	ND	16.7	10/14/13 09:25	
Acenaphthylene	ug/kg	ND	16.7	10/14/13 09:25	
Anthracene	ug/kg	ND	16.7	10/14/13 09:25	
Benzo(a)anthracene	ug/kg	ND	16.7	10/14/13 09:25	
Benzo(a)pyrene	ug/kg	ND	16.7	10/14/13 09:25	
Benzo(b)fluoranthene	ug/kg	ND	16.7	10/14/13 09:25	
Benzo(g,h,i)peryleпе	ug/kg	ND	16.7	10/14/13 09:25	
Benzo(k)fluoranthene	ug/kg	ND	16.7	10/14/13 09:25	
Chrysene	ug/kg	ND	16.7	10/14/13 09:25	
Dibenz(a,h)anthracene	ug/kg	ND	16.7	10/14/13 09:25	
Fluoranthene	ug/kg	ND	16.7	10/14/13 09:25	
Fluorene	ug/kg	ND	16.7	10/14/13 09:25	
indeno(1,2,3-cd)pyrene	ug/kg	ND	16.7	10/14/13 09:25	
Naphthalene	ug/kg	ND	16.7	10/14/13 09:25	
Phenanthrene	ug/kg	ND	16.7	10/14/13 09:25	
Pyrene	ug/kg	ND	16.7	10/14/13 09:25	
2-Fluorobiphenyl (S)	%	98	40-130	10/14/13 09:25	
Terphenyl-d14 (S)	%	89	40-130	10/14/13 09:25	
. , , ,					

LABORATORY CONTROL SAMPLE:	874242					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Lîmits	Qualifiers
Acenaphthene	ug/kg	333	319	96	55-130	
Acenaphthylene	ug/kg	333	307	92	55-130	
Anthracene	ug/kg	333	337	101	66-130	
Benzo(a)anthracene	ug/kg	333	304	91	55-130	
Benzo(a)pyrene	ug/kg	333	311	93	56-130	
Benzo(b)fluoranthene	ug/kg	333	346	104	53-130	
Benzo(g,h,i)perylene	ug/kg	333	314	94	51-130	
Benzo(k)fluoranthene	ug/kg	333	321	96	52-130	
Chrysene	ug/kg	333	331	99	58-130	
Dibenz(a,h)anthracene	ug/kg	333	313	94	55-130	
Fluoranthene	ug/kg	333	318	95	62-130	
Fluorene	ug/kg	333	324	97	58-130	
Indeno(1,2,3-cd)pyrene	ug/kg	333	307	92	54-130	
Naphthalene	ug/kg	333	264	79	41-130	
Phenanthrene	ug/kg	333	317	9 5	60-130	
Pyrene	ug/kg	333	322	97	51-130	
2-Fluorobiphenyl (S)	%			100	40-130	
Terphenyl-d14 (S)	%			94	40-130	

Project:

D DOCK

Pace Project No.: 4086098

MATRIX SPIKE & MATRIX S	SPIKE DUPLICAT	E: 87424	3		874244							
	41	086118003	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Acenaphthene	ug/kg	<9.6	384	384	353	349	92	91	31-130	<u></u>	35	
Acenaphthylene	ug/kg	<9.6	384	384	339	341	88	88	32-130	1	25	
Anthracene	ug/kg	<9.6	384	384	362	361	94	94	39-131	0	38	
Benzo(a)anthracene	ug/k g	<9.6	384	384	342	338	89	88	29-130	1	30	
Benzo(a)pyrene	ug/kg	<3.4	384	384	396	394	103	102	35-130	0	33	
Benzo(b)fluoranthene	ug/kg	<9.6	384	384	452	444	117	115	21-142	2	44	
Benzo(g,h,i)perylene	ug/kg	<9.6	384	384	298	290	77	75	12-134	3	33	
Benzo(k)fluoranthene	ug/kg	<3.4	384	. 384	328	329	85	86	35-130	0	37	
Chrysene	ug/kg	<9.6	384	384	351	345	91	89	37-130	2	38	
Dibenz(a,h)anthracene	ug/kg	<9.6	384	384	328	329	85	86	23-130	0	27	
Fluoranthene	ug/kg	<9.6	384	384	355	351	92	91	29-137	1	50	
Fluorene	ug/kg	<9.6	384	384	359	358	93	93	32-130	0	32	
ndeno(1,2,3-cd)pyrene	ug/kg	<9.6	384	384	315	314	82	82	17-134	0	28	
Naphthalene	ug/kg	<9.6	384	384	312	294	81	77	24-130	6	40	
henanthrene	ug/kg	<9.6	384	384	360	359	93	93	27-135	0	46	
yrene	ug/kg	<9.6	384	384	355	353	91	90	24-130	0	49	
:-Fluorobiphenyl (S)	%						97	95	40-130			
erphenyl-d14 (S)	%						87	87	40-130			

Project:

D DOCK

Pace Project No.:

4086098

QC Batch:

OEXT/20193

Analysis Method:

EPA 8270 by SIM

QC Batch Method:

EPA 3546

Analysis Description:

8270/3546 MSSV PAH by SIM

Associated Lab Samples:

Jairipies.

4086098001, 4086098002, 4086098003, 4086098006

METHOD BLANK: 874765

Date: 10/17/2013 04:45 PM

Matrix: Solid

Associated Lab Samples:

4086098001, 4086098002, 4086098003, 4086098006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Acenaphthene	ug/kg	ND	16.7	10/14/13 11:10	
Acenaphthylene	ug/kg	ND	16.7	10/14/13 11:10	
Anthracene	ug/kg	ND	16.7	10/14/13 11:10	
Benzo(a)anthracene	ug/kg	ND	16.7	10/14/13 11:10	
Benzo(a)pyrene	ug/kg	ND	16.7	10/14/13 11:10	
Benzo(b)fluoranthene	ug/kg	ND	16.7	10/14/13 11:10	
Benzo(g,h,i)perylene	ug/kg	ND	16.7	10/14/13 11:10	
Benzo(k)fluoranthene	ug/kg	ND	16.7	10/14/13 11:10	
Chrysene	ug/k g	ND	16.7	10/14/13 11:10	
Dibenz(a,h)anthracene	ug/kg	ND	16.7	10/14/13 11:10	
Fluoranthene	ug/kg	ND	16.7	10/14/13 11:10	
Fluorene	ug/kg	ND	16.7	10/14/13 11:10	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	16.7	10/14/13 11:10	
Naphthalene	ug/kg	ND	16.7	10/14/13 11:10	
Phenanthrene	ug/kg	ND	16.7	10/14/13 11:10	
Pyrene	ug/kg	ND	16.7	10/14/13 11:10	
2-Fluorobiphenyl (S)	%	92	40-130	10/14/13 11:10	
Terphenyl-d14 (S)	%	82	40-130	10/14/13 11:10	

LABORATORY CONTROL SAMPLE:	874766					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Acenaphthene	ug/kg	333	295	88	55-130	
Acenaphthylene	ug/kg	333	288	86	55-130	
Anthracene	ug/kg	333	333	100	66-130	
Benzo(a)anthracene	ug/kg	333	280	84	55-130	
Benzo(a)pyrene	ug/kg	333	289	87	56-130	
Benzo(b)fluoranthene	ug/kg	333	323	97	53-130	
Benzo(g,h,i)perylene	ug/kg	333	296	89	51-130	
Benzo(k)fluoranthene	ug/kg	333	294	88	52-130	
Chrysene	ug/kg	333	298	89	58-130	
Dibenz(a,h)anthracene	ug/kg	333	296	89	55-130	
Fluoranthene	ug/kg	333	309	93	62-130	
Fluorene	ug/kg	333	301	90	58-130	
Indeno(1,2,3-cd)pyrene	ug/kg	333	293	88	54-130	
Naphthalene	ug/kg	333	234	70	41-130	
Phenanthrene	ug/kg	333	310	93	60-130	
Pyrene	ug/kg	333	294	88	51-130	
2-Fluorobiphenyl (S)	%			97	40-130	
Terphenyl-d14 (S)	%			89	40-130	

Project:

D DOCK

Pace Project No.:

Date: 10/17/2013 04:45 PM

4086098

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 87476	7		874768						·	
	4085823002		MS 2 Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Acenaphthene	ug/kg	<9.9	396	396	372	353	92	87	31-130	<u>_</u> 5	35	
Acenaphthylene	ug/kg	32.6	396	396	366	359	84	82	32-130	2	25	
Anthracene	ug/kg	29.7	396	396	377	371	87	86	39-131	2	38	
Benzo(a)anthracene	ug/kg	93.6	396	396	386	387	74	74	29-130	0	30	
Benzo(a)pyrene	ug/kg	119	396	396	438	450	80	83	35-130	3	33	
Benzo(b)fluoranthene	ug/kg	122	396	396	425	537	76	104	21-142	23	44	
Benzo(g,h,i)perylene	ug/kg	71.0	396	396	310	305	60	59	12-134	1	33	
Benzo(k)fluoranthene	ug/kg	119	396	396	430	371	78	64	35-130	15	37	
Chrysene	ug/kg	140	396	396	412	423	68	71	37-130	3	38	
Dibenz(a,h)anthracene	ug/kg	26.8	396	396	333	334	77	78	23-130	0	27	
Fluoranthene	ug/kg	168	396	396	445	448	70	71	29-137	1	50	
luorene	ug/kg	<9.9	396	396	367	358	91	89	32-130	2	32	
ndeno(1,2,3-cd)pyrene	ug/kg	63.0	396	396	326	327	66	66	17-134	0	28	
Naphthalene	ug/kg	411	396	396	570	645	40	59	24-130	12	40	
Phenanthrene	ug/kg	105	396	396	428	433	81	83	27-135	1	46	
Pyrene	ug/kg	159	396	396	449	453	73	74	24-130	1	49	
?-Fluorobiphenyl (S)	%						92	92	40-130			
Terphenyl-d14 (S)	%						83	84	40-130			

ட

Project:

D DOCK

Pace Project No.:

4086098

QC Batch:

OEXT/20205

Analysis Method:

EPA 8270 by SIM

QC Batch Method:

EPA 3546

Analysis Description:

8270/3546 MSSV PAH by SIM

Associated Lab Samples:

4086098008, 4086098010

METHOD BLANK: 874967

Matrix: Solid

Associated Lab Samples:

Date: 10/17/2013 04:45 PM

4086098008, 4086098010

Dominator	l laite	Blank	Reporting	Analysis	0
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Acenaphthene	ug/kg	ND	16.7	10/14/13 16:04	
Acenaphthylene	ug/kg	ND	16.7	10/14/13 16:04	
Anthracene	ug/kg	ND	16.7	10/14/13 16:04	
Benzo(a)anthracene	ug/kg	ND	16.7	10/14/13 16:04	
Benzo(a)pyrene	ug/kg	ND	16.7	10/14/13 16:04	
Benzo(b)fluoranthene	ug/kg	ND	16.7	10/14/13 16:04	
Benzo(g,h,i)perylene	ug/kg	ND	16.7	10/14/13 16:04	
Benzo(k)fluoranthene	ug/kg	ND	16.7	10/14/13 16:04	
Chrysene	ug/kg	ND	16.7	10/14/13 16:04	
Dibenz(a,h)anthracene	ug/kg	ND	16.7	10/14/13 16:04	
-luoranthene	ug/kg	ND	16.7	10/14/13 16:04	
Fluorene	ug/kg	ND	16.7	10/14/13 16:04	
ndeno(1,2,3-cd)pyrene	ug/kg	ND	16.7	10/14/13 16:04	
Vaphthalene	ug/kg	ND	16.7	10/14/13 16:04	
Phenanthrene	ug/kg	ND	16.7	10/14/13 16:04	
Pyrene	ug/kg	ND	16.7	10/14/13 16:04	
2-Fluorobiphenyl (S)	%	80	40-130	10/14/13 16:04	
Terphenyl-d14 (S)	%	76	40-130	10/14/13 16:04	

LABORATORY CONTROL SAMI	PLE: 874968					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Acenaphthene	ug/kg	333	251	75	55-130	
Acenaphthylene	ug/kg	333	246	74	55-130	
Anthracene	ug/kg	333	267	80	66-130	
Benzo(a)anthracene	ug/kg	333	238	71	55-130	
Benzo(a)pyrene	ug/kg	333	242	73	56-130	
Benzo(b)fluoranthene	ug/kg	333	272	82	53-130	
Benzo(g,h,i)perylene	ug/kg	333	249	75	51-130	
Benzo(k)fluoranthene	ug/kg	333	248	74	52-130	
Chrysene	ug/kg	333	259	78	58-130	
Dibenz(a,h)anthracene	ug/kg	333	244	73	55-130	
Fluoranthene	ug/kg	333	251	75	62-130	
Fluorene	ug/kg	333	256	77	58-130	
Indeno(1,2,3-cd)pyrene	ug/kg	333	241	72	54-130	
Naphthalene	ug/kg	333	210	63	41-130	
Phenanthrene	ug/kg	333	250	75	60-130	
Pyrene	ug/kg	333	254	76	51-130	
2-Fluorobiphenyl (S)	%			78	40-130	
Terphenyl-d14 (S)	%			74	40-130	

Project:

D DOCK

Pace Project No.:

4086098

QC Batch:

PMST/9000

Analysis Method:

ASTM D2974-87

RPD

QC Batch Method:

ASTM D2974-87

Analysis Description:

Dry Weight/Percent Moisture

Associated Lab Samples:

4086098001, 4086098002, 4086098003, 4086098004, 4086098005, 4086098006, 4086098007, 4086098008,

4086098009, 4086098010, 4086098011

Units

SAMPLE DUPLICATE: 875184

Parameter

4086572002 Result

Dup Result Max

RPD

Qualifiers

Percent Moisture

Date: 10/17/2013 04:45 PM

%

20.5

20.0

2

10

Project:

D DOCK

Pace Project No.:

4086098

QC Batch:

WETA/19880

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

Analysis Description:

300.0 IC Anions

Associated Lab Samples:

4086098001, 4086098002, 4086098003, 4086098004, 4086098005, 4086098006, 4086098008, 4086098010

METHOD BLANK: 870425

Matrix: Solid

Associated Lab Samples:

Date: 10/17/2013 04:45 PM

4086098001, 4086098002, 4086098003, 4086098004, 4086098005, 4086098006, 4086098008, 4086098010

Parameter	Units ·	Blank Result	Reporting Limit	Analyzed	Qualifiers
Nitrate as N		ND	3.0	10/09/13 10:24	
Nitrite as N	mg/kg	ND	2.0	10/09/13 10:24	
Nitrogen, NO2 plus NO3	ma/ka	ND	3.0	10/09/13 10:24	

LABORATORY CONTROL SAMPLE:	870426					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Nitrate as N	mg/kg	20	19.2	96	80-120	
Nitrite as N	mg/kg	10	10.9	109	80-120	
Nitrogen, NO2 plus NO3	mg/kg	30	30.1	100		

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 87042	7		870428							
Parameter	40 Units	086098001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max	Qual
Nitrate as N		- ND	141	141	140	140	98	98	80-120		20	
Nitrite as N	mg/kg mg/kg	ND	70.9	70.9	76.6	77.3	108	109	80-120	1	20	
Nitrogen, NO2 plus NO3	ma/ka	ND	213	213	216	217	102	103	00-120	'n	20	

Project:

D DOCK

Pace Project No.:

4086098

QC Batch:

WETA/19986

Analysis Method:

EPA 350.1

QC Batch Method:

EPA 350.1

Analysis Description:

350.1 Ammonia

Associated Lab Samples:

4086098001, 4086098002, 4086098003, 4086098004, 4086098005, 4086098006, 4086098008, 4086098010

METHOD BLANK: 873143

Matrix: Solid

Associated Lab Samples:

4086098001, 4086098002, 4086098003, 4086098004, 4086098005, 4086098006, 4086098008, 4086098010

Blank

Parameter

Units

Result

Reporting Limit

Analyzed

Qualifiers

Nitrogen, Ammonia

mg/kg

ND

10/11/13 20:22 15.0

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Parameter

Units

LCS LCS Result % Rec % Rec Limits

80-120

Qualifiers

Nitrogen, Ammonia

mg/kg

Conc. 300

MS

Conc.

2040

Spike

291

97

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

873145

873146

MSD

Result

MSD

Result

2130

MS

% Rec

Max

Nitrogen, Ammonia

Nitrogen, Ammonia

Date: 10/17/2013 04:45 PM

Units Result mg/kg <52.8

Units

mg/kg

4085716001 Spike Conc.

Spike Conc. 2210 2210

MS Result 2420

% Rec 2320 107 % Rec Limits 103 80-120

RPD RPD

Quai 20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

873147

MSD

Conc.

1950

MSD

873148 MS Result

2180

108

4086324002

Result

<51.1

MS Spike Spike

MS

% Rec

106

MSD % Rec

MSD

% Rec

Max

Limits RPD RPD Qual 80-120

3 20

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ட

Project:

D DOCK

Pace Project No.:

4086098

QC Batch:

WETA/19883

Analysis Method:

EPA 351.2

QC Batch Method:

EPA 351.2

Analysis Description:

351.2 TKN

Associated Lab Samples:

4086098001, 4086098002, 4086098003, 4086098004, 4086098005, 4086098006, 4086098008, 4086098010

METHOD BLANK: 870479

Matrix: Solid

Associated Lab Samples:

4086098001, 4086098002, 4086098003, 4086098004, 4086098005, 4086098006, 4086098008, 4086098010

Blank

Reporting

Parameter

Parameter

Parameter

Parameter

Units

Units

4085496003

4086098010

Result

247

Result

36200

Result

Limit

Analyzed

Qualifiers

Nitrogen, Kjeldahl, Total

mg/kg

ND

10/07/13 22:08 100

LABORATORY CONTROL SAMPLE: 870480

Spike Conc

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Nitrogen, Kjeldahl, Total

Nitrogen, Kjeldahl, Total

Nitrogen, Kjeldahl, Total

mg/kg

Units

Units

mg/kg

mg/kg

500

MS

Spike

Conc.

MS

Spike

Conc.

562

5440

450

870482

Result

34800

90

80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

870481

MSD

Spike

Conc.

MS

MSD

Result

49000

MS % Rec

% Rec

85

MSD % Rec

% Rec Limits

80-120

Max RPD RPD

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

562

5440

870484

Result

727

235

80

20 P6,R1

Qual

870483

MSD

Conc.

Spike MS

MSD

698

Result

MS MSD

% Rec

-26

% Rec Limits

Max

RPD RPD Qual

4 20

80-120

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

D DOCK

Pace Project No.:

4086098

QC Batch:

WETA/20092

Analysis Method:

EPA 365.4

QC Batch Method:

EPA 365.4

Analysis Description:

Matrix: Solid

365.4 Total Phosphorus

Associated Lab Samples:

4086098001, 4086098002, 4086098003, 4086098004, 4086098005, 4086098006, 4086098008, 4086098010

METHOD BLANK: 876897 Associated Lab Samples:

Blank

Parameter

Parameter

Parameter

Parameter

Date: 10/17/2013 04:45 PM

Units Result Reporting Limit

Analyzed

Qualifiers

Phosphorus

mg/kg

ND

40.0 10/17/13 12:23

LABORATORY CONTROL SAMPLE: 876898

Spike

LCS Result % Rec % Rec Limits

Qualifiers

Phosphorus

mg/kg

Units

Units

mg/kg

mg/kg

Units

10245808002

Result

500

509

102

80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

876900

MSD

LCS

MSD

Result

632

MS MSD

83

% Rec Limits

Max

10245808010

Result

Conc 294

MS

Spike

MS

Spike

Conc.

400

Conc.

Spike MS Conc. Result 294 670

MSD Result % Rec 668

% Rec 82

RPD RPD 80-120

Qual

Phosphorus

Phosphorus

427

876902

679

0 20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

876901

325

MSD Spike

Conc.

400

MS Result MS

% Rec

88

MSD % Rec

77

% Rec Limits

80-120

Max

RPD RPD Qual

20 MO

ட

Project:

D DOCK

Pace Project No.:

4086098

QC Batch:

WETA/19969

Analysis Method:

EPA 9060 Modified

QC Batch Method:

EPA 9060 Modified

Analysis Description:

9060 TOC Average

Associated Lab Samples:

4086098001, 4086098002, 4086098003, 4086098004, 4086098005, 4086098006, 4086098008, 4086098010

METHOD BLANK: 872253

Matrix: Solid

Associated Lab Samples:

 $4086098001,\,4086098002,\,4086098003,\,4086098004,\,4086098005,\,4086098006,\,4086098008,\,4086098010$

Blank

Reporting

Parameter

Units

Result

Limit

Analyzed

Qualifiers

Mean Total Organic Carbon

mg/kg

ND

600 10/11/13 08:09

LABORATORY CONTROL SAMPLE:

Parameter

872254

Spike Conc.

Spike

Conc.

MS

14800

11700

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Mean Total Organic Carbon

Parameter

Mean Total Organic Carbon

mg/kg

Units

Units

mg/kg

mg/kg

Units

4086098003

Result

15600

120000

125000

104

80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

872255

MS

MSD Spike Солс. 872256 MS Result

27700

MSD MS % Rec Result

26600

MSD % Rec

% Rec Limits

Max RPD RPD Qual

11700

872258

104

50-150

30

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

872257

MSD

MSD

MS

MSD

% Rec

Max

RPD RPD Qual

Mean Total Organic Carbon

Parameter

4086098002 Spike Result Conc.

9790

Spike

MS Conc. 14900

Result 27600

Result 26300

% Rec % Rec 120

Limits 110

50-150

30 5

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 39 of 46

ட

Pace Analytical Services, Inc. 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

QUALIFIERS

Project:

D DOCK

Pace Project No.:

4086098

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G

Pace Analytical Services - Green Bay

ANALYTE QUALIFIERS

Date: 10/17/2013 04:45 PM

1q	Benzo(b)fluoranthene and benzo(k)fluoranthene were in the check standard but did not meet the resolution criteria in SW846 Method 8270C. Whereas sample results included are reported as individual isomers, the lab and the customer
	must recognize them as an isomeric pair.

Two additional repetitions were analyzed as a result of an RPD >/=40%. The results from the additional repetitions are 41,800 mg/Kg and 40,700 mg/Kg, adjusted for % moisture.

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

Date: 10/17/2013 04:45 PM

D DOCK

Pace Project No.: 4086098

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
4086098001	SB-5-13 (13.5-18)	EPA 3541	OEXT/20147	EPA 8082	GCSV/10323
4086098002	SB-5-13 (18-26)	EPA 3541	OEXT/20147	EPA 8082	GCSV/10323
4086098003	SB-5-13 (26-31)	EPA 3541	OEXT/20147	EPA 8082	GCSV/10323
4086098004	SB-6-13 (7-12.5)	EPA 3541	OEXT/20147	EPA 8082	GCSV/10323
4086098005	SB-6-13 (12.5-17.5)	EPA 3541	OEXT/20147	EPA 8082	GCSV/10323
4086098006	SB-6-13 (17.5-22.5)	EPA 3541	OEXT/20147	EPA 8082	GCSV/10323
4086098008	SB-7-13 (19-21.5)	EPA 3541	OEXT/20147	EPA 8082	GCSV/10323
4086098010	SB-8-13 (14.5-17)	EPA 3541	OEXT/20147	EPA 8082	GCSV/10323
4086098001	SB-5-13 (13.5-18)	EPA 3050	MPRP/9280	EPA 6010	ICP/8174
4086098002	SB-5-13 (18-26)	EPA 3050	MPRP/9280	EPA 6010	ICP/8174
4086098003	SB-5-13 (26-31)	EPA 3050	MPRP/9280	EPA 6010	ICP/8174
4086098004	SB-6-13 (7-12.5)	EPA 3050	MPRP/9280	EPA 6010	ICP/8174
4086098005	SB-6-13 (12.5-17.5)	EPA 3050	MPRP/9280	EPA 6010	ICP/8174
4086098006	SB-6-13 (17.5-22.5)	EPA 3050	MPRP/9280	EPA 6010	ICP/8174
4086098008	SB-7-13 (19-21.5)	EPA 3050	MPRP/9280	EPA 6010	ICP/8174
4086098010	SB-8-13 (14.5-17)	EPA 3050	MPRP/9280	EPA 6010	ICP/8174
4086098001	SB-5-13 (13.5-18)	EPA 7471	MERP/3901	EPA 7471	MERC/4972
4086098002	SB-5-13 (18-26)	EPA 7471	MERP/3901	EPA 7471	MERC/4972
4086098003	SB-5-13 (26-31)	EPA 7471	MERP/3901	EPA 7471	MERC/4972
4086098004	SB-6-13 (7-12.5)	EPA 7471	MERP/3901	EPA 7471	MERC/4972
4086098005	SB-6-13 (12.5-17.5)	EPA 7471	MERP/3901	EPA 7471	MERC/4972
4086098006	SB-6-13 (17.5-22.5)	EPA 7471	MERP/3901	EPA 7471	MERC/4972
4086098008	SB-7-13 (19-21.5)	EPA 7471	MERP/3901	EPA 7471	MERC/4972
4086098010	SB-8-13 (14.5-17)	EPA 7471	MERP/3901	EPA 7471	MERC/4972
4086098001	SB-5-13 (13.5-18)	EPA 3546	OEXT/20193	EPA 8270 by SIM	MSSV/6099
4086098002	SB-5-13 (18-26)	EPA 3546	OEXT/20193	EPA 8270 by SIM	MSSV/6099
4086098003	SB-5-13 (26-31)	EPA 3546	OEXT/20193	EPA 8270 by SIM	MSSV/6099
4086098004	SB-6-13 (7-12.5)	EPA 3546	OEXT/20192	EPA 8270 by SIM	MSSV/6098
4086098005	SB-6-13 (12.5-17.5)	EPA 3546	OEXT/20192	EPA 8270 by SIM	MSSV/6098
4086098006	SB-6-13 (17.5-22.5)	EPA 3546	OEXT/20193	EPA 8270 by SIM	MSSV/6099
4086098008	\$B-7-13 (19-21.5)	EPA 3546	OEXT/20205	EPA 8270 by SIM	MSSV/6102
4086098010	SB-8-13 (14.5-17)	EPA 3546	OEXT/20205	EPA 8270 by SIM	MSSV/6102
4086098001	SB-5-13 (13.5-18)	ASTM D2974-87	PMST/9000		
4086098002	SB-5-13 (18-26)	ASTM D2974-87	PMST/9000		
4086098003	SB-5-13 (26-31)	ASTM D2974-87	PMST/9000		
4086098004	SB-6-13 (7-12.5)	ASTM D2974-87	PMST/9000		
4086098005	SB-6-13 (12.5-17.5)	ASTM D2974-87	PMST/9000		
4086098006	SB-6-13 (17.5-22.5)	ASTM D2974-87	PMST/9000		
4086098007	SB-6-13 (24-30.5)	ASTM D2974-87	PMST/9000		
4086098008	SB-7-13 (19-21.5)	ASTM D2974-87	PMST/9000		
4086098009	SB-7-13 (21.5-31.5)	ASTM D2974-87	PMST/9000		
4086098010	SB-8-13 (14.5-17)	ASTM D2974-87	PMST/9000		
1086098011	SB-8-13 (17-32)	ASTM D2974-87	PMST/9000		
4086098001	SB-5-13 (13.5-18)	EPA 300.0	WETA/19880	EPA 300.0	WETA/19891
4086098002	SB-5-13 (18-26)	EPA 300.0	WETA/19880	EPA 300.0	WETA/19891

REPORT OF LABORATORY ANALYSIS

ட

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

Date: 10/17/2013 04:45 PM

D DOCK

Pace Project No.: 4086098

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
4086098003	SB-5-13 (26-31)	EPA 300.0	WETA/19880	EPA 300.0	WETA/19891
4086098004	SB-6-13 (7-12.5)	EPA 300.0	WETA/19880	EPA 300.0	WETA/19891
4086098005	SB-6-13 (12.5-17.5)	EPA 300.0	WETA/19880	EPA 300.0	WETA/19891
4086098006	SB-6-13 (17.5-22.5)	EPA 300.0	WETA/19880	EPA 300.0	WETA/19891
4086098008	SB-7-13 (19-21.5)	EPA 300.0	WETA/19880	EPA 300.0	WETA/19891
4086098010	SB-8-13 (14.5-17)	EPA 300.0	WETA/19880	EPA 300.0	WETA/19891
4086098001	SB-5-13 (13.5-18)	EPA 350.1	WETA/19986	EPA 350.1	WETA/19998
4086098002	SB-5-13 (18-26)	EPA 350.1	WETA/19986	EPA 350.1	WETA/19998
4086098003	SB-5-13 (26-31)	EPA 350.1	WETA/19986	EPA 350.1	WETA/19998
4086098004	SB-6-13 (7-12.5)	EPA 350.1	WETA/19986	EPA 350.1	WETA/19998
4086098005	SB-6-13 (12.5-17.5)	EPA 350.1	WETA/19986	EPA 350.1	WETA/19998
4086098006	SB-6-13 (17.5-22.5)	EPA 350.1	WETA/19986	EPA 350.1	WETA/19998
4086098008	SB-7-13 (19-21.5)	EPA 350.1	WETA/19986		WETA/19998
4086098010	SB-8-13 (14.5-17)	EPA 350.1	WETA/19986	EPA 350.1	WETA/19998
4086098001	SB-5-13 (13.5-18)	EPA 351.2	WETA/19883	EPA 351.2	WETA/19899
4086098002	SB-5-13 (18-26)	EPA 351.2	WETA/19883	EPA 351.2	WETA/19899
4086098003	SB-5-13 (26-31)	EPA 351.2	WETA/19883	EPA 351.2	WETA/19899
4086098004	SB-6-13 (7-12.5)	EPA 351.2	WETA/19883	EPA 351.2	WETA/19899
4086098005	SB-6-13 (12.5-17.5)	EPA 351.2	WETA/19883	EPA 351.2	WETA/19899
4086098006	SB-6-13 (17.5-22.5)	EPA 351.2	WETA/19883		WETA/19899
4086098008	SB-7-13 (19-21.5)	EPA 351.2	WETA/19883		WETA/19899
4086098010	SB-8-13 (14.5-17)	EPA 351.2	WETA/19883	EPA 351.2	WETA/19899
4086098001	SB-5-13 (13.5-18)	EPA 365.4	WETA/20092	EPA 365.4	WETA/20096
4086098002	SB-5-13 (18-26)	EPA 365.4	WETA/20092	EPA 365.4	WETA/20096
4086098003	SB-5-13 (26-31)	EPA 365.4	WETA/20092	EPA 365.4	WETA/20096
4086098004	SB-6-13 (7-12.5)	EPA 365.4	WETA/20092	EPA 365.4	WETA/20096
4086098005	SB-6-13 (12.5-17.5)	EPA 365.4	WETA/20092	EPA 365.4	WETA/20096
4086098006	SB-6-13 (17.5-22.5)	EPA 365.4		EPA 365.4	WETA/20096
4086098008	SB-7-13 (19-21.5)	EPA 365.4	WETA/20092		WETA/20096
4086098010	SB-8-13 (14.5-17)	EPA 365.4	WETA/20092	EPA 365.4	WETA/20096
4086098001	SB-5-13 (13.5-18)	EPA 9060 Modified	WETA/19969		
4086098001	SB-5-13 (13.5-18)	EPA 9060 Modified	WETA/19970		
4086098002	SB-5-13 (18-26)	EPA 9060 Modified	WETA/19969		
4086098002	SB-5-13 (18-26)	EPA 9060 Modified	WETA/19970		
1086098003	SB-5-13 (26-31)	EPA 9060 Modified	WETA/19969		
1086098003	SB-5-13 (26-31)	EPA 9060 Modified	WETA/19970		
1086098004	SB-6-13 (7-12.5)	EPA 9060 Modified	WETA/19969		
1086098004	SB-6-13 (7-12.5)	EPA 9060 Modified	WETA/19970		
1086098005	SB-6-13 (12.5-17.5)	EPA 9060 Modified	WETA/19969		
1086098005	SB-6-13 (12.5-17.5)	EPA 9060 Modified	WETA/19970		
	•				

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

Date: 10/17/2013 04:45 PM

D DOCK

Pace Project No.: 4086098

Lab ID	Sample ID	QC Batch Method	QC Batch Analytical Method	Analytical Batch
4086098006	SB-6-13 (17.5-22.5)	EPA 9060 Modified	WETA/19970	
4086098008	SB-7-13 (19-21.5)	EPA 9060 Modified	WETA/19969	
4086098008	SB-7-13 (19-21.5)	EPA 9060 Modified	WETA/19970	
4086098010	SB-8-13 (14.5-17)	EPA 9060 Modified	WETA/19969	
4086098010	SB-8-13 (14.5-17)	EPA 9060 Modified	WETA/19970	

ш

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

		_	i	_		1/1	.	<u>-</u>	<u>.</u>	-35	Ť	<u> </u>	. 1	.V	- }	ان	, '	i 				7 1				1 - 4	- 5-1	<u> </u>	30 //	
							Ž	±	10 15	77	\$ XX	7	<u></u>	ڻ ا	\$ 000	3 53	2	-	ITEM#		\$ Q	1	eque	S	る	どが	Address:39	Company:	Section A Required Client Information:	
								P	2	رځ.	75.	58	20	\$B~	P		8	3	SAMPLE ID (A-Z, 0-9 / -) Sample IDs MUST BE UNIQUE		Section D Required Client Information		sted D	\rightarrow	Ę.,	F	νž.	1	ed Clic	
						\ \		da		د	Ľ	16	6	e.	6	ķ	N	3	ş S Ş S		Client		Due Date/TAT	7	'een		1 I	3	ent ini	
					İ	niad		1	1	7	1	Ĺ,	1	1		Ċ		·	SAMPLE ID (A-Z, 0-9 / -) Jie IDs MUST BE UNI		Inform		ate/T/	27.	3		GAR	9	forma	
				ł	ļ	ANO		还	3		\ \frac{1}{2}	V	Į.	7	P		 	_	ST 88 2. F		ration	H	÷		(E)				ÇOT:	
			İ			8		b	7	בַּן	2	K	5	ز	دا	3	<u> </u>	نَّن	UNIC TO			П		7	Ž	ے۔ (R	\tilde{z}	ľ		
			1			ADDITIONAL COMMENTS		1	Š	1	1	-	٩	S	61	1 .	<i>ر</i> ة 1	5	뙲				-	R	6,	55.80	FLEW			
						Īs		Ŋ	Ŕ	10	۳	1	20	Ŀ	3.5	3	به	200	요음동일양국	₽ <i>≨</i> § §	?				de	38	O			
								J	Z	P)	¥,	30.5	23		₩	۲		\sim	Product Soil/Soild Oil Wipe Air Tissue Other	Water Water Waste Water	Matrix Codes MATRIX / CODE	l			£.	ĭ				
Ç	ב			6	Ι.		å Æ	1		7	_	ヾ	۲	Ų	•				u.	Water	Ω 	IJ			at.	'				
Š	5	-	۲.,	H	H	+				[1							0-1>50%-		iğ 🔂		Projec	Projec	E		Ç.	Re Poo	Secti	
5			7		1/	K)	/	<u> </u>			Ļ								우목두등다	° ≩ ⊃ ≤		IJ	Project Number:	Project Name:	Parender No.:		ö	of Town (O)	Section B Required Project Information:	
ľ		١.	2	B	人	肾		<u>"</u>	<u> </u>	F	۲,	25	F	Ş	3,	8	15		MATRIX CODE (see val	alid codes	to left)		nber:	ŭ.	rder!		Š		roject	
			1	K.	1/2] <u>§</u>		b	3	6	3	6	7	6	U	G		(2	SAMPLE TYPE (G=GRA	AB C=C	OMP)		1	C	ō:		Ì	3	Infon	
		-	6%	6	3	RELINCUISHED BY AFFILIATION	4	-		L	Ö	P	4	L.	G/30/3	4	<u>_</u>	16 1 3	ijvū	~				(A)			Q.	9	nation	
			100			角	L			ر,	Š	3		•	0/3	í		5 2	iri o	COMPOSITE	İ			200				0	=	
	SAN			V	1	A	Γ	Ī		ļ ,	γ.	13							=	H SITE				7			, k			
	(PLE		ľ	16		暑						(3) (3)	-						TIME		le le		ŀ	/ `			[6		
SIGN PRIN	SAMPLER NAME AND SIGNATURE	1		$ \mathcal{L} $	1	2						~							Ę		COLLECTED	ll				۱ ا	Š		•	
A I	ME A									:									DATE	COMPOSITE END/GRAB	#				ı		F	3/2		
PRINT Name of SAMPLER:	NDS		2	<i>†</i>	13														=1	& SE			ļ				- {-	\		
PRINT Name of SAMPL	S S		3	12/	33	M	-												TIME											
	NU K		-	12	100	111	┢			_									SAMPLE TEMP AT COLLE	ECTION	1.					ļ		اڈ		
M I	m		X					Ŵ	W	Š	Ų,	نر	Üλ,	زي	J	Û	V	S	# OF CONTAINERS	•		lſ	Pace	Pace Proj Manager	Pace	Address:	Com	Atter	Sec	
F SQ (300	500	11:374	M		Z	ス			X	X			2	Z	X	Unpreserved				Pace Profile #	Pace Project Manager	Pace Quote Reference:	ess:	Company Name:	Attention;	Section C	
1			£	Q	1/2									_			-		H ₂ SO ₄] ₂₀		*	٦	_		Name	-		
70			7	• /			-		_			-			\dashv	_			HCI		ese			ĺ		1		8	g.	
12/			Lian	- (12														NaOH		Preservatives					l	3	1		
2			∼ I	4	>	₽ C	┝			_					\dashv	\dashv	\dashv		Na ₂ S ₂ O ₃ Methanol		es					ľ	("	4		
m			2		P	PJE													Other							- 1	İ			
1/2		7		l	\wp	BY		Ą	i di	والزائر	r F	É.	(A)	\mathcal{Z}_{r}	(11)	102	\$		Analysis Test	753	Y/N	554 554	ľ							
3			"	Λ		/ <u>A</u>		X	1	X	X:	Ż	Y	X	X	۷	싀	K	PAHS	_		及		ı						
E Si			15	(P	ACCEPTED BY LAFFILIATION	H	メ	×	ال م	<u> </u>	\bigcirc	×	*	섥	<u> </u>	<u>×</u> †	X	LP Metals Phosphorus		\vdash	que					ļ			
DATE Signed			200		H	S	H		X	\preceq	2		\overline{Z}	\		굿	ᅱ			EUTE		sted								
`					V			Z	S	X	7	×	<u>X</u>	3	7	×	×	$\overline{\mathbb{Z}}$		1720		Ana	14. 17%	S.	7	7	굒	_		
y	1		K.		W	ō		×	×	<	\leq	×.		اخِ	4	×	إخ	X.		244		lysis	S	E LO	UST	Z P	<u></u>			
الا		r	10	۰, ۱	13/13	DATE	H	S	5	S	\leq	S		\leq	S	\sum_{i}	싓	5	PCBS TOTAL ORG C	400	Xi	FI	STATE	Site Location	-	NPDES	5 O		هي	,
š	1	\dashv	8				\vdash		<i>7</i> ~	2			<u> </u>	1	3		어	쒸	TO THE OKE C	יאט	V VI	ered		24	٦	\neg	27			Ţ
		ŀ	M		V	TIME																Requested Analysis Filtered (Y/N)	1	<u>,</u>	RCRA	မ္ဘ	REGULATORY AGENCY			
		_[7	-	Ĺ		\Box			_		\Box		[\bot	_					<u> </u>	3	10114	*	Ŗ	NNO	ই		Page:	
Temp in *0	c	Ň	N				\vdash	\vdash		_	-			\dashv	+	\dashv	-	4	Residual Chlorine (Y/N	.13	133	45	-	~		Dγ] "	
	\dashv	\dashv	W		- (H	-	-			-		-	-	+		┥	residual Ciliotile (1)N	1/	A CONTRACTOR OF THE CONTRACTOR	1	ζ	ᅱ		GROUND WATER	- 1	S	1	
Received o loe (Y/N)		ſ	Y	4	-4	SΔ					ļ					ļ	(ند	Pac Ce		14 A				٦	7	(1	
Custs 4	+	\dashv	\dashv					4	_	_							Ļ	뇐			Ź	7						46	및	į
Custody ealed Coo	ler	3				Š					j	T			1	7	_ (3	<u>o</u> .		'	- [OTHER	XI	- 1	ហ		
(Y/N)	4	\dashv	_}	_	<u> </u>	SAMPLE CONDITIONS											ď	ğ)	# N 0						;ä I	S		0		
		1				Š											Ī	4	Project No./ Lab I.D			,				DRINKING WATER				
emples into (Y/N)	act		0																5					l		밎				
	- 1		- [- 1		- 1			- 1		- 1			- [1	7						1			Pa	g 44	. !

Steve Mleczko - Re: D Dock Samples

4086098

From:

<bmcvean@epcduluth.com>

To:

"Steve Mleczko" <Steve Mleczko@pacelabs.com>

Date:

questions, Brian

10/4/2013 10:19 AM Subject: Re: D Dock Samples

I need to take one more sample off the list, please hold off on sample SB-6-13 (24-30.5), thanks So the total change to the COC will be a minus 3 samples leaving eight (8) to run for the full suite of parameters. Thanks, of course call with any and all

Brian E. McVean, PE **EPC Engineering & Testing** 539 Garfield Avenue **Duluth, MN 55802** (218) 727-1239 o (218) 727-1248 f (218) 343-2677 c

On Fri 10/04/13 8:42 AM, "Steve Mleczko" <Steve.Mleczko@pacelabs.com> wrote:

Steve

Steve Mleczko Project Manager Pace Analytical Services, Inc. Green Bay Laboratory (920) 321-9440 Direct Dial (920) 469-2436 Ext. 440 Steve.Mleczko@pacelabs.com

>>> <bmcvean@epcduluth.com> 10/4/2013 8:31 AM >>>

Hi Steve, the two samples I wish to hold off on are: SB-8-13 (17-32), SB-7-13 (21.5-31.5), thanks

Brian E. McVean, PE **EPC Engineering & Testing** 539 Garfield Avenue Duluth, MN 55802 (218) 727-1239 o (218) 727-1248 f (218) 343-2677 c

Message sent via Atmail Open - http://atmail.org/

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit http://www.symanteccloud.com

L

Pace Analytical"

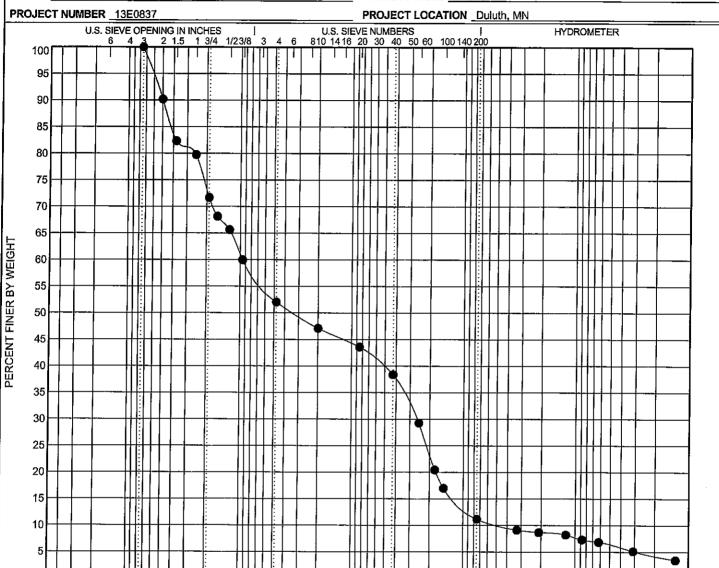
F-GB-C-031-Rev.01 (01Mar2013) SCUR Form

Sample Condition Upon Receipt

Client Name	i <u>Ž</u>		<u> </u>		Project#	408	36098
Courier: NFed Ex T UPS T USPS T		omme	rcial []	Pade	Other		
Tracking #: 146 3 369 Custody Seal on Cooler/Box Present: Kyes		Spal	s intact: ">	Ves:	E po		
	r X no		s intact:		•		
Packing Material: Bubble Wrap Bub			e [O	•	Paris 1		
Thermometer Used 5R43	Type of Ice			-	Samples or	ice, cooling proc	ess has begun
Cooler Temperature Uncorr: 3 /Corr:	3.5	Bioid	gical Tiss	sue is Fr	ozen: 📜 yes	·	
Temp Blank Present: yes Ino					∏ no	1/4	nining contents:
Temp should be above freezing to 6°C for all sample exc Frozen Biota Samples should be received ≤ 0°C.	cept Biota.		Comme	nts:		Date:	30
Chain of Custody Present:	Yes INo	□n/A	1.				
Chain of Custody Filled Out:	ZYes □No	□n/A	2.				
Chain of Custody Relinquished:	ZYes □No	□n/A	3.				
Sampler Name & Signature on COC:	Yes 🗆 No	□n/a	4.				
Samples Arrived within Hold Time:	ZYes □No	□n/A	5.				
- VOA Samples frozen upon receipt	r □Yes □No		Date/Time	:			
Short Hold Time Analysis (<72hr):	□Yes ZNo	□N/A	6				
Rush Turn Around Time Requested:	□Yes ØNo	□n/A					
Sufficient Volume:	ZÎYes □No			······	,. ,		
Correct Containers Used:	ZYes □No		 				•
	ZYes No	□n/A	3.	•			
-Pace Containers Used:			}				
-Pace IR Containers Used:	☐Yes ☐No	Ç Z ÎN/A					· · · · · · · · · · · · · · · · · · ·
Containers Intact:	ZYes □No	□n/A					
Filtered volume received for Dissolved tests	∐Yes □No	ZÑA	11.		4 114 1	- (cag par	(2 =)
Sample Labels match COC:	□Yes X No	□N⁄A	12004	- 1-10 - T N 1	depth reads	1 6 13-17	当ノツ
-Includes date/fime/ID/Analysis Matrix:	<u> </u>		ALL	-544	PLES MAT	ZHED IN	ONLY"
All containers needing preservation have been checked. Non-Compliance noted in 13.)	□Yes □No	Ç Z ÎN/A	13.	HNO:	H2SO4 T	NaOH IT N	laOH +ZnAct
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No	IZN/A					
HNO3, H2SO4 ≤2; NaOH+ZnAct ≥9, NaOH ≥12)			Initial wher		Lab Std #ID of		
exceptions: VOA, coliform, TOC, TOX, TOH, D&G, WIDROW, Phenolics, OTHER:	□Yes ZNo		completed		preservative	Time:	
leadspace in VOA Vials (>6mm):	□Yes □No	ZNA	14.				
rip Blank Present	□Yes □No	ZINIA	15.				
rip Blank Custody Seals Present	□Yes □No	ZINIA					
Pace Trip Blank Lot # (if purchased):							
				If	checked, see alfach	ed-form-for-addition	inal-comments—t
Person Contacted: Comments/ Resolution:		_Date/	Time:				
COMBINED INCOMEDIA							
	· · · · · · · · · · · · · · · · · · ·			· .,	···		
		····-				10 L	
Project Manager Review:		~~~~			Date:	1/1/7	717
2 Tojour munugut Noview	<u>/</u>			···		Pag	e 46 of 46

ATTACHMENT 4 PHYSICAL LABORATORY REPORTS

i


Geotechnical • Environmental • Materials Engineering

539 Garfield Avenue Duluth, Minnesota 55802

CLIENT LHB Corporation

PROJECT NAME D Dock

GRAIN SIZE DISTRIBUTION

GRAIN SIZE IN MILLIMETERS

0.1

0.01

0.001

	GP/	WEI		SANE	<u> </u>	
CORRIES	010	1 V L L		SAINL	<u>, </u>	SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILTOROLAT

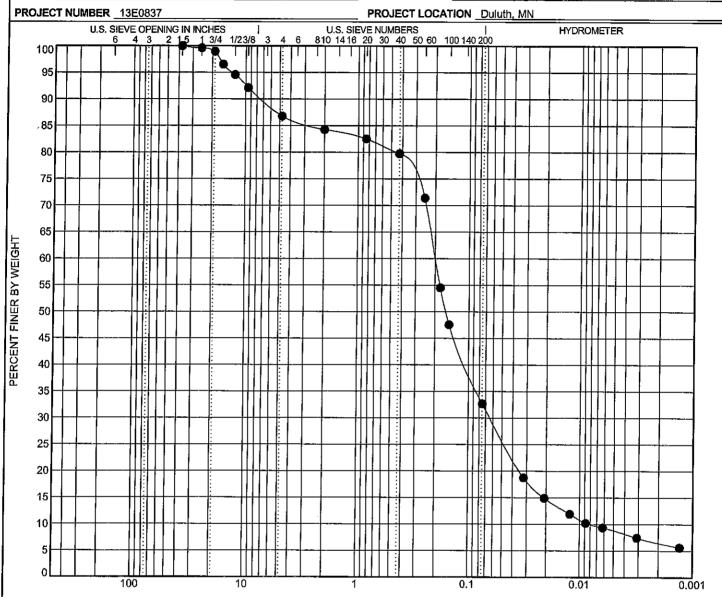
<u></u>	Specimen Ider	ntification				Classification	n			LL	PL	Pl	Cc	Cu
و ا	Lab Sample	#217 P	OORLY	GR/	DED GRA	VEL with SILT	Y CLAY an	d SAND(GP-G	2)			0.15	204.63
ğ			D10	0	D60	D30	D10	%Grav	el	%Sand		%Silt	%	Clay
13E0837 D DOCK.GPJ			75		9.505	0.261	0.046	48.0		40.9		4.9	(6.3
	SIEVE	% PAS	SS	S	PEC	SIEVE	% PA	SS	SP	EC		NO	TES	
₽L		100				#10	47					ple obt		rom
۲L	2"	90				#16					SB-5	(13.5)	<i>-</i> 18')	
ă[1.5"	82				#20	44							
	1"	80				#30					1		-	
5	3/4"	72				#40	38		•					
ΞL	5/8"	68				#50								
<u>.</u> L	1/2"	_ 66				#60	29							
糺	3/8"	60				#80	20							
ĮL	#4	52				#100	17					-		
5_	#8					#200	11.2	2						

100

10

GRAIN SIZE WITH SPEC BANDS 13E0837 D DOCK.GPJ GINT US LAB.GDT 10/17/13

Geotechnical • Environmental • Materials Engineering


539 Garfield Avenue

Duluth, Minnesota 55802

CLIENT LHB Corporation

PROJECT NAME D Dock

GRAIN SIZE DISTRIBUTION

GRAIN SIZE IN MILLIMETERS									
	PC	IMPET	11	NAII.	INI	SIZE	INI.	$D\Delta I$	

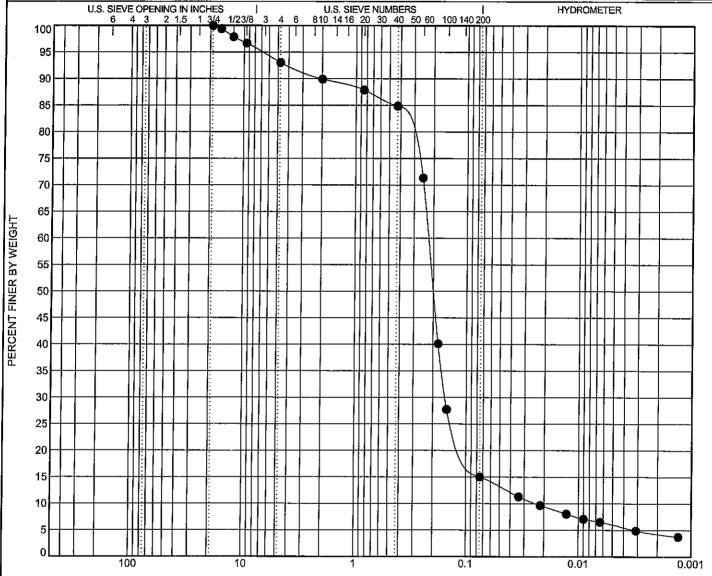
İ	CORRIGO	GRA	VEL		SANE		
	COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAY

		100		10		· · · · · · · · · · · · · · · · · · ·		0.1			0.01		U.	.001
					GR	RAIN SIZE IN	MILLIMETER	lS .						
	COBE	31 EC	GR	AVEL	1	S	AND			OII T	00.0			
i	COBE	DLE3	coarse	fine	coarse	e mediur	n fii	ne		SIL I	OR C	LAY		
Specin	nen Iden	tification			С	lassificatio	on			LL	PL	PI	Сс	Cu
● Lab	Sample	# 218			SIL	TY SAND(SM)						2.52	25.0
			D10	D60		D30	D10	%Gra	avel	%Sand	i	%Silt	%	Clay
			37.5	0.2		0.064	0.008	13.	2	54.1		23.9		8.8
SIE		% P/	\SS	SPEC		SIEVE	% PA	SS	S	PEC	T '		TES	
3						#10	84	ļ				iple obt		from
2		40.				#16	ļ <u>.</u>				SB-	5 (18' -	26')	
1,	5"	10				#20	83	5		· · · · · · · ·	1			
3/4	/" 	10 99		, ,		#30 #40	80				+		-	
5/i		97			- -	# 5 0	00	'						
1/2		95				#60	71			··	+			
3/8		92				#80	55				-			
#4	4	87				#100	48				1			
#	8					#200	32.							

Geotechnical • Environmental • Materials Engineering

539 Garfield Avenue

Duluth, Minnesota 55802


PROJECT NUMBER 13E0837

CLIENT LHB Corporation

PROJECT NAME D Dock

GRAIN SIZE DISTRIBUTION

GRAIN SIZE IN MILLIMETERS

COBBLES	GRA	VEL		SANE)	SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILTORCLAT

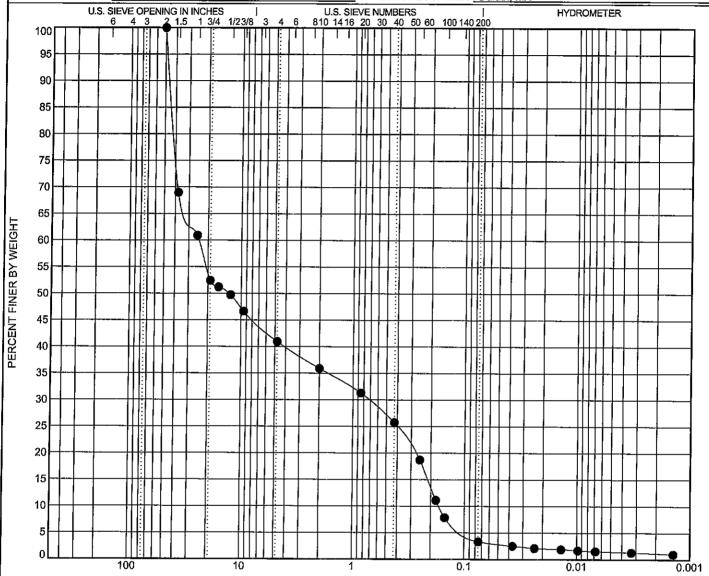
S	Specimen Identification						Classification					PL	P!	Сс	Cu
GP.	•	Lab Sample	# 219			SILTY,	CLAYEY SAN	D(SC-SM)						4.60	9.41
D DOCK				D1	00	D60	D30	D10	%Gr	avel	%Sand	1	%Silt	%(Clay
				1:	9	0.222	0.155	0.024	6.	9	78.0		9.0	•	3.0
13E0837		SIEVE	% PAS	SS		SPEC	SIEVE	% PA	SS	S	PEC		NO	TES	
힘		3"					#10	90)				ple obt		rom
낊		2"					#16					SB-	5 (26' -	31')	
SPEC BANDS		1.5"					#20	88	3						
		1"					#30								
		3/4"	100				#40	85	<u> </u>						
目		5/8"	99				#50								
SIZE WITH		1/2"	98				#60	71							
		3/8"	97				#80_	_ 40							
GRAIN		#4	93				#100	28						•	
8		#8					#200	15.	0					•	

GINT US LAB.GDT 10/17/13

ы

Geotechnical • Environmental • Materials Engineering

539 Garfield Avenue


Duluth, Minnesota 55802

CLIENT LHB Corporation

PROJECT NAME D Dock

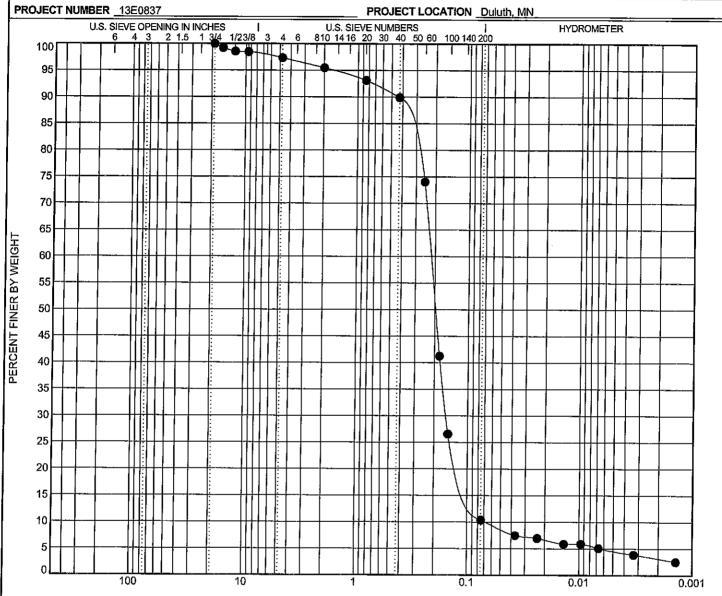
GRAIN SIZE DISTRIBUTION

GRAIN SIZE IN MILLIMETERS

COBBLES	GR/	VEL		SAND)	CHTODOLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAY

5		_											
GINT		ntification				Classification	n		LL	PL	PI	Сс	Cu
.GP.	● Lab Sample		PC	ORLY GRA	ADED GRAVE	L with SAN	D(GP)		-		0.13	143.47	
D DOCK			D1	00	D60	D30	D10	%Gravel	%Sand	1	%Silt	%	Clay
200			5()	24.261	0.721	0.169	59.1	37.6		1.9		1.4
13E0837 I	SIEVE	% PAS	SS ,		SPEC	SIEVE	% PA	SS	SPEC	Τ'	NC	TES	
띖	3"					#10	36	3		San	ple ob	lained	from
8	2"	100	i l			#16		· ·		SB-	6 (7.5' -	12.5')	
SPEC BANDS	1.5"	69		-		#20	31			1	X		
ខ្ល	1"	61				#30				1			
8	3/4"	52		_		#40	26						
픱	5/8"	51				#50							
SIZE WITH	1/2"	50				#60	19						·-
띯	3/8"	47				#80	11						
GRAIN	#4	41				#100	8						
띩	#8					#200	3.4						

Geotechnical • Environmental • Materials Engineering


539 Garfield Avenue

Duluth, Minnesota 55802

CLIENT LHB Corporation

PROJECT NAME _D Dock

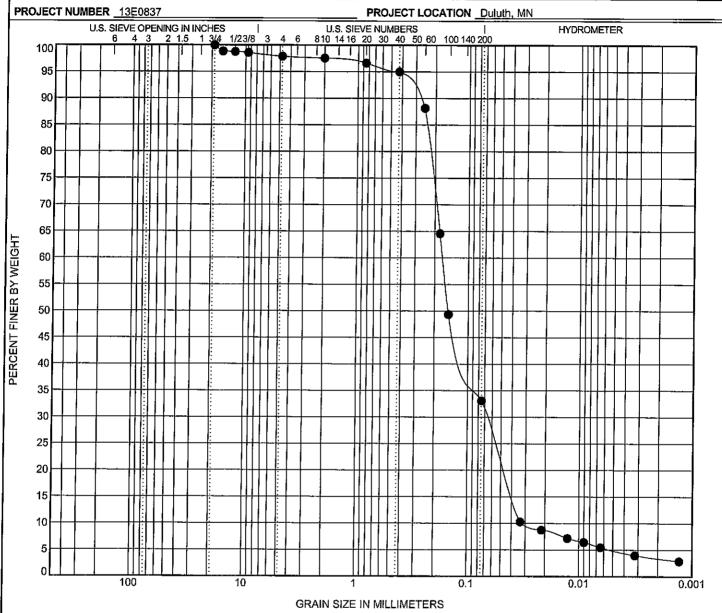
GRAIN SIZE DISTRIBUTION

GRAIN SIZE IN MILLIME	TER\$	

COBBLES	GRA	\ /III		SAND		SILT OR CLAY
CODDLES	coarse	fine	coarse	medium	fine	SILT OR CLAY

	Specimen Ider	ntification		Classification						LL	PL	PI	Сс	Cu
<u>a</u>	Lab Sample	# 221	P	OORL	Y GRADE	D SAND with	SILTY CLA	Y(SP-SC))			-	1.66	3.19
Š			D10	D100 D60		D30	D10	%Grav	el	%Sand	9 %Silt		%(Clay
13E0837 D DOCK.GP			19		0.217	0.157	0.068	2.6	İ	87.0		5.8	4	1.6
	SIEVE	% PAS	SS	S	PEC	SIEVE	% PA	SS	ŠĪ	PEC	<u> </u>	NO	TES	
<u>~</u> [_	3"					#10	95	5			Sam	ple obt	ained f	rom
Z.	2"					#16						(12.5)		
BANDS	1.5"					#20	93	3						
	1"	<u> </u>				#30								
딠	3/4"	100				#40	90			,				
ΞL	5/8"	99				#50								
<u> </u>	1/2"	99				#60	74				l —			
SIZE WITH	3/8"	98				#80	41						•	
SKAIN CRAIN	#4	97				#100	27							
:[_	#8		_			#200	10.	4						

Geotechnical • Environmental • Materials Engineering


539 Garfield Avenue

Duluth, Minnesota 55802

CLIENT LHB Corporation

PROJECT NAME D Dock

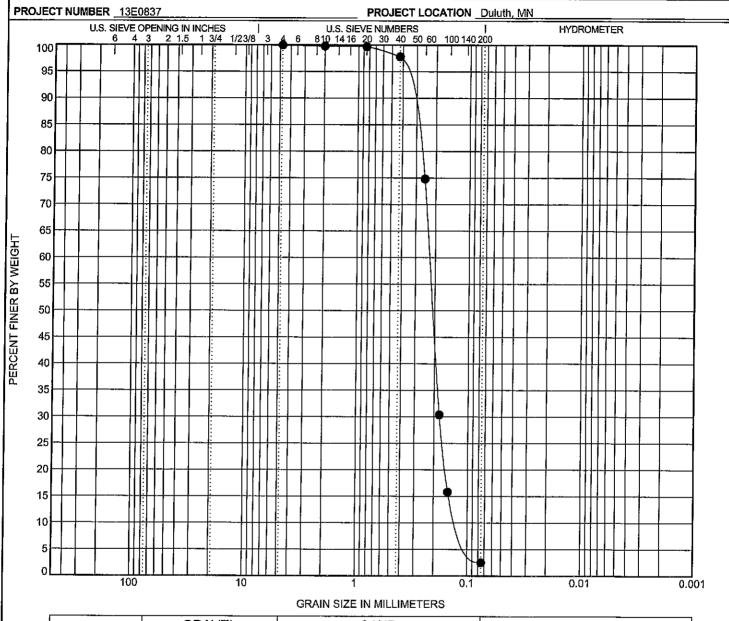
GRAIN SIZE DISTRIBUTION

				GRAI	IN SIZE IN WILL	INETERS		
	COBBLES	GRA	VEL		SAND)	SILT OR CLAY	
1	CODDLLS	coarse	fine	coarse	medium	fine	SILT OR CLAY	•

Ϊ	Specimen Ider	ntification				Classification				LL	PL	PI	Сс	Cu
GP.	 Lab Sample 	Lab Sample # 222					SM)						0.86	5.57
Š	D100 D60			D30	D10	%Gr	avel	%Sand	nd %Silt		%(%Clay		
13E0837 D DOCK			19)	0.17	0.067	0.031	2.	1	64.8		28.2	4	l.9
8	SIEVE	% PA	SS		SPEC	SIEVE	% P/	SS	S	PEC		NO	TES	
힘	3"					#10	98	3			Sam	iple obt	ained f	rom
낊	2"					#16					SB-6	3 (17.5)	- 22.5')
SPEC BANDS	1.5"					#20	97	7						
ပ္ပါ	1"					#30								
	3/4"	100				#40	95	;						
티.	5/8"	99				#50								
١	1/2"	99				#60	88	3						_
읤	3/8"	99				#80	65	<u> </u>						
GRAIN SIZE WITH	#4	98				#100	49							
띖	#8					#200	33.	1						

U GINT US LAB.GDT 10/17/13

Geotechnical • Environmental • Materials Engineering


539 Garfield Avenue

Duluth, Minnesota 55802

CLIENT _LHB Corporation

PROJECT NAME D Dock

GRAIN SIZE DISTRIBUTION

COPPLES	GRA	VEL		SAND		CILT OF OLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAY

8	Specimen Ider	ntification					LL	PL	PI	Сс	Cu			
릥	● Lab Sample	∍ # 223			POOR	LY GRADED	SAND(SP)						1.29	2.02
ğ			D10	00	D60	D30	D10	%Gra	vel	%Sand		%Silt	%(Clay
13E0837 D DOCK		4.7	4.75 0.224 0.179 0.111 0.0)	97.5			2.5				
8	SIEVE	% PAS	SS	5	SPEC	SIEVE	% PA	SS	ŚF	PEC			TES	
취	3"					#10	100)		.,		ple obt		rom
낊	2"				ĺ	#16					SB-6	3 (24' -	30.5')	
퇿	1.5"_					#20	100)				•		
SPEC BANDS	1"					#30								
	3/4"					#40	98							
且	5/8"	<u></u>				#50					1			
亂	1/2"					#60	75				1		,	
띪	3/8"					#80	30							
GRAIN SIZE WITH	#4	100				#100	16	Ī						
띩	#8					#200	2.5						-	

EPC Engineering & Testing **GRAIN SIZE DISTRIBUTION** Geotechnical • Environmental • Materials Engineering 539 Garfield Avenue Duluth, Minnesota 55802 CLIENT LHB Corporation PROJECT NAME D Dock PROJECT NUMBER _13E0837 PROJECT LOCATION Duluth, MN U.S. SIEVE NUMBERS | 810 1416 20 30 40 50 60 100 140 200 U.S. SIEVE OPENING IN INCHES HYDROMETER 4 3 2 1.5 1 3/4 100 95 90 85 80 75 70 65 PERCENT FINER BY WEIGHT 60 55 50 45 40 35 30 25 20 15 10 100 10 0.01 0.001 **GRAIN SIZE IN MILLIMETERS GRAVEL** SAND **COBBLES** SILT OR CLAY coarse fine coarse fine medium

근												4
GINTU	Specimen Ide	ntification			Classification	n	· ·	LL	PL	PI	Сс	Cu
G.	● Lab Sampl	e # 224		SILTY,	CLAYEY SAN	ID(SC-SM)					1.51	3.93
ŏ			D100	D60	D30	D10	%Gravel	%Sand	<u> </u>	%Silt	1 %(Clay
13E0837 D DOCK,GPJ			12.5	0.182	0.113	0.046	0.5	87.1		5.8		5.7
983	SIEVE	% PA	SS	SPEC	SIEVE	% PA	SS	SPEC	T	NC	TES	
Ĕ			" -		#10	99)		Sar	nple obt	ained f	rom
ខ	2"				#16				SB-	7 (19' -	21.5')	
쥚	1.5"				#20	98	3					
SPEC BANDS	1 ⁿ				#30							
딠					#40	96			 			
티	5/8"_				#50				+			
SIZE WITH	1/2"	100			#60	88	,					
딠	3/8"	100			#80	59						
ŞĮ	#4	100			#100	42						
띩	#8	1			#200	12			1			

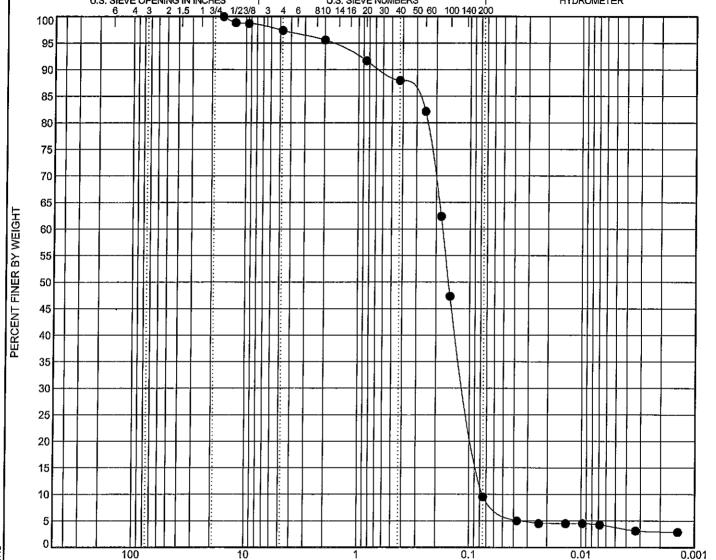
GRAIN SIZE DISTRIBUTION EPC Engineering & Testing Geotechnical • Environmental • Materials Engineering 539 Garfield Avenue Duluth, Minnesota 55802 **CLIENT** LHB Corporation PROJECT NAME D Dock PROJECT NUMBER 13E0837 PROJECT LOCATION Duluth, MN 1 3 U.S. SIEVE NUMBERS | 810 14 16 20 30 40 50 60 100 140 200 U.S. SIEVE OPENING IN INCHES 6 4 3 2 1.5 1 3/4 HYDROMETER 1 3/4 1/23/8 100 95 90 85 80 75 70 65 PERCENT FINER BY WEIGHT 60 55 50 45 40 35 30 25 20 15 10 5 0.01 0.001 100 10 0.1 GRAIN SIZE IN MILLIMETERS

			CIVA	IIV OIZE IIV WILL		
COBBLES	GRA	VEL		SAND)	SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAT

5	U		100		10	<u> • </u>	1 11		!	0.1	· <u> </u>		0.01			<u></u> 001
10/17/13			100										υ.	001		
						GRA	IN SIZE IN	MILLIN	/IETERS	3						
<u>છ</u>		0000150			VEL	T	SAND			OU T OD OLAV]		
US LAB.GDT		COBBLES		coarse	coarse fine c		coarse medium fine		е	SILT OR CLAY						
ENT I	Specin	nen Iden	itification			Cla	assificatio	on .				LL	PL	PI	Сс	Cu
					POORLY GRADED SAND(SP)								1.32	2.14		
13E0837 D DOCK.GPJ					D60		D30	D	10	%Gr	avel	%Sand	i	%Silt	%	Clay
				9.5	0.198	3	0.156	0.0)93	0.	3	96.4			3.3	
8	SIE		% PA	SS SPEC			SIEVE % PASS		SS	SPEC		NOT				
5		,"					#10		99				Sam	ple obt	ained t	rom
SPEC BANDS	2						#16						SB-	7 (21.5'	<u>- 31.5'</u>)
§		5" "				_	#20		99							
낊							#30						 -	~-		
	3/-						#40		<u>98</u>				-			
ŞI-	5/				· · · · · · · · · · · · · · · · · · ·		#50	_	00				+			
바	3/4	2"	100				#60 #80		<u>88</u> 48							
깕	#		100				#00 #100		25							
GRAIN SIZE WITH	#		100	,			#200	+	3.3						. .	
ூட	TT	<u>~ 1</u>	_				ITZUU		0.0				J			

Geotechnical • Environmental • Materials Engineering

539 Garfield Avenue


Duluth, Minnesota 55802

CLIENT LHB Corporation

PROJECT NAME D Dock

GRAIN SIZE DISTRIBUTION

PROJECT NUMBER 13E0837 PROJECT LOCATION Duluth, MN U.S. SIEVE OPENING IN INCHES 6 4 3 2 1.5 1 3/4 U.S. SIEVE NUMBERS | 810 1416 20 30 40 50 60 100 140 200 HYDROMETER 1/23/8 100 95

GRAIN SIZE IN MILLIMETERS

COBBLES		VEL		SAND)	SILT OD CLAV
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAT

	U	المسلسسا		ليحلط											J
10/17/13			100		10		1			0.1		0.01		0.	001
						GF	AIN SIZE IN	MILLIM	ETERS	3					
AB.GDT		COBBLES		GRAVEL			SAND				SILT OR CLAY]
USLA				coarse	rse fine c		coarse medium fine		9						
GINT	Specin	nen Ider	ntification				lassificati	on			LL	PL	PI	Сс	Cu
용		Sample		PO	ORLY GR				CLA	(SP-SC)				0.90	2.31
13E0837 D DOCK				D100	D6	0	D30	D1	0	%Gravel	%Sand	t	%Silt	%(Clay
				16	0.17	75	0.109	0.07	76	2.6	87.9		5.7	:	3.8
83	SIE		% PA	SS SPEC			#10		% PASS SI		SPEC	Sample of		NOTES obtained from	
	3														
SIZE WITH SPEC BANDS	2						#16					SB-8	3 (14.5)	<u>- 17')</u>	
á		5"					#20		92						
읾	1						#30								
꼜	3/-						#40		88	_					
티	5/		100				#50								
	1/3		99				#60		82						
읤	3/3		99				#80		62						
GRAIN	#		97				#100		47						
6	#	8				. L	#200	L	9.5						

GRAIN SIZE DISTRIBUTION EPC Engineering & Testing Geotechnical • Environmental • Materials Engineering 539 Garfield Avenue Duluth, Minnesota 55802 CLIENT LHB Corporation PROJECT NAME D Dock PROJECT NUMBER 13E0837 PROJECT LOCATION _Duluth, MN U.S. SIEVE NUMBERS | 810 14 16 20 30 40 50 60 100 140 200 U.S. SIEVE OPENING IN INCHES 6 4 3 2 1.5 1 3/4 HYDROMETER 1/23/8 3 100 95 90 85 80 75 70 65 PERCENT FINER BY WEIGHT 60 55 50 45 40 35 30 25 20 15 10 5 0.01 0.001 **GRAIN SIZE IN MILLIMETERS GRAVEL** SAND **COBBLES** SILT OR CLAY coarse fine coarse medium fine PL Specimen Identification Classification LL ΡĮ Cc Cu Lab Sample # 227 POORLY GRADED SAND(SP) 1.28 2.05 D100 D30 D60 D10 %Gravel %Sand %Silt %Clay 9.5 0.203 0.161 0.099 0.4 97.0 2.7 SIEVE % PASS SPEC SIEVE % PASS **SPEC** NOTES Sample obtained from SB-8 (17' - 32') 3" #10 99 2" #16 1.5" #20 98 #30 3/4" #40 96 5/8" #50 1/2" 86 #60 3/8" 100 #80 45

#100

#200

21

2.7

#4

#8

100

DSPA Dredge Sampling Bap Detections over Tier 1 Tier 1 Bap Equiv. Dredge Material SRV = 2 Tier 2 Bap Equiv. Dredge Material SRV = 3

SB-5-13 26'-31' BaP Equivalent

Chemical	CAS No.	Relative Potency Factor	Enter Site Concentration mg/kg	BaP Equivalent (mg/kg)
Benz[a]anthra	5 6-5 5-3	0.1	1 87	0.187
Benzo[b]fluors	205-99-2	0.1	1 32	0.132
Benzo[k]fluora	207-08-9	0.01	1 41	0.0141
Benzo[a]pyrer	5 0-32- 8	1	1.74	1.74
Chrysene	218-0 1-9	0.001	1.94	0.00194
Dibenz[ah]ant	53-7 0-3	1		0
Indeno[1,2,3-c	193-39-5	0.1	0 712	0.0712
			Total BaP equivalents =	2.14624

compare this value to the BaP SRV

Return

Return

S3 28.5'-30' BaP Equivalent

		Relative	Enter	BaP
	CAS No.	Potency	Site Concentration	Equivalent
Chemical		Factor	mg/kg	(mg/kg)
Benz[a]anthra	56-55-3	0.1	3.99	0.399
Benzo[b]fluora	205-99-2	0.1	28	0.28
Benzo[k]fluora	207-08-9	0.01	3 59	0.0359
Benzo[a]pyrer	50-32-8	1	3 66	3.66
Chrysene	218-01-9	0.001	4 44	0.00444
Dibenz[ah]ant	53-70-3	1		0
Indeno[1,2,3-<	193-39-5	0.1	1 62	0.162
			Total BaP equivalents =	4.54134

compare this value to the BaP SRV